A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well ...A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well as the relationship between the normalized peak-failure stress ratio and the exponent function of the intermediate principal stress ratio. This model can well predict the variations of the peak-failure stress ratio with the initial confining pressure and the intermediate principal stress ratio for different rockfill materials under different general stress paths. Comparisons of the measured and predicted results show that the peak-failure strength under the constant-p' and constant-b path is larger than that under the constant-σ'_3 and constant-b path. The predictive capacity of the proposed model for the peakfailure stress ratio is better than that for the peak-failure friction angle.展开更多
A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length...A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length at the center. The experiment indicates that the strength of the composite samples can not be obtained by superimposure of reinforcing pile and soil simply according to their replacement proportion. It also indicates the law for stress ratio of reinforcing column to soil. The stress ratio of reinforcing column to soil increases and reaches peak rapidly while load and strain is small. Then the ratio decreases. This law is in accordance with the measuring resuits in construction site.展开更多
A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect o...A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.展开更多
The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading d...The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.展开更多
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p...Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.51509024 and 51678094)the Project funded by China Postdoctoral Science Foundation(Grant No.2016M590864)
文摘A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well as the relationship between the normalized peak-failure stress ratio and the exponent function of the intermediate principal stress ratio. This model can well predict the variations of the peak-failure stress ratio with the initial confining pressure and the intermediate principal stress ratio for different rockfill materials under different general stress paths. Comparisons of the measured and predicted results show that the peak-failure strength under the constant-p' and constant-b path is larger than that under the constant-σ'_3 and constant-b path. The predictive capacity of the proposed model for the peakfailure stress ratio is better than that for the peak-failure friction angle.
文摘A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length at the center. The experiment indicates that the strength of the composite samples can not be obtained by superimposure of reinforcing pile and soil simply according to their replacement proportion. It also indicates the law for stress ratio of reinforcing column to soil. The stress ratio of reinforcing column to soil increases and reaches peak rapidly while load and strain is small. Then the ratio decreases. This law is in accordance with the measuring resuits in construction site.
基金supported by the National Natural Science Foundation of China(11172304 and 11021262)the National Basic Research Program of China (2012CB937500)
文摘A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.
基金the National Natural Science Foundation of China(No.50479059)National Basic Research Program(No.2007CB714202)
文摘The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied. Strength and deformations of plain concrete specimens in two loading direction under biaxial compression with stress ratio of a=0, 0.25, 0.5, 0.75, 1.0 were obtained after 0, 25, 50 cycles of freeze-thaw. Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed according to the experimental results, Based on the test data, the failure criterion expressed in terms of principal stress after different cycles of freeze-thaw, and the failure criterion with consideration of the influence of freeze-thaw cycle and stress ratio were proposed respectively.
文摘Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.