The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in rel...The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in relation to solution treatment, quenching and artificial aging treatment were established in order to optimize precipitation strengthening conditions intended to enhance the strength of Al alloys. Slow strain rate tests (SSRT) at various applied potentials were conducted in potential range from -1.8 to 0.5 V. The results show that the maximum tensile strengths, elongations and time-to-fracture are shown to be high values. After precipitation strengthening heat treatment, a tendency appear that time-to-fracture increases as elongation increases. In the potential range from -1.3 V to -0.7 V, the specimens show excellent mechanical properties, and thus this range is considered to be a corrosion prevention range.展开更多
Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced ...Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.展开更多
A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively design...A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.展开更多
Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged ...Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.展开更多
To counter the mass reproduction and penetration of crustacean zooplankton in Biological Activated Carbon(BAC)filters which may result in the presence of organisms in potable water and water pollution,this paper analy...To counter the mass reproduction and penetration of crustacean zooplankton in Biological Activated Carbon(BAC)filters which may result in the presence of organisms in potable water and water pollution,this paper analyzed the factors affecting organisms' reproduction in BAC filters.A comparative study was performed on the density and composition of crustacean zooplankton of the concerned water treatment units of two advanced water plants(Plant A and B)which with the same raw water and the same treatment technique in southern China.The results obtained show that the crustaceans' density and composition was very different between the sand filtered water of Plant A and Plant B.which Harpacticoida bred sharply in the sediment tanks and penetrated sand filter into BAC filters was the primary reason of crustaceans reproduce in BAC filters of Plant A.For prevention of the organisms reproduction in BAC,some strengthen measures was taken including pre-chlorination,cleaning coagulation tanks and sediment tanks completely,increasing sludge disposal frequency to stop organisms enter BAC filters,and the finished water quality was improved and enhanced.展开更多
Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a...Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using “Tailored blanks” or “Patchwork structures” meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengthening-patterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.展开更多
文摘The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in relation to solution treatment, quenching and artificial aging treatment were established in order to optimize precipitation strengthening conditions intended to enhance the strength of Al alloys. Slow strain rate tests (SSRT) at various applied potentials were conducted in potential range from -1.8 to 0.5 V. The results show that the maximum tensile strengths, elongations and time-to-fracture are shown to be high values. After precipitation strengthening heat treatment, a tendency appear that time-to-fracture increases as elongation increases. In the potential range from -1.3 V to -0.7 V, the specimens show excellent mechanical properties, and thus this range is considered to be a corrosion prevention range.
基金Project(0122021300) supported by the Natural Science Foundation of Henan Province
文摘Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.
基金The National Key Project of China duringthe 10th Five-Year Plan Period (NoMKPT-01-004(ZD))
文摘A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.
文摘Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.
基金Sponsored by the Major National S&T Program-Water Pollution and Governance(Grant No.2009ZX07423-003)
文摘To counter the mass reproduction and penetration of crustacean zooplankton in Biological Activated Carbon(BAC)filters which may result in the presence of organisms in potable water and water pollution,this paper analyzed the factors affecting organisms' reproduction in BAC filters.A comparative study was performed on the density and composition of crustacean zooplankton of the concerned water treatment units of two advanced water plants(Plant A and B)which with the same raw water and the same treatment technique in southern China.The results obtained show that the crustaceans' density and composition was very different between the sand filtered water of Plant A and Plant B.which Harpacticoida bred sharply in the sediment tanks and penetrated sand filter into BAC filters was the primary reason of crustaceans reproduce in BAC filters of Plant A.For prevention of the organisms reproduction in BAC,some strengthen measures was taken including pre-chlorination,cleaning coagulation tanks and sediment tanks completely,increasing sludge disposal frequency to stop organisms enter BAC filters,and the finished water quality was improved and enhanced.
文摘Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using “Tailored blanks” or “Patchwork structures” meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengthening-patterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.