An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Int...An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.展开更多
Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and dens...Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and densification. By considering the structure factors of multi-layer corrugated boards, the energy absorption model is obtained and characterized by the structure factors of corrugated cell-wall. The model is standardized by the solid modulus and it is universal for corrugated structures of different basis material. In the liner-elastic section, with the increase of the load, the energy absorption per unit volume of multi-layer corrugated boards gradually increases; in the sub-buckling section going with local collapse, the compression resistance of multi-layer corrugated boards goes on under a nearly constant load, but the energy absorption per unit volume rapidly increases with the increase of the compression strain. It is shown as an ascending curve in the energy absorption diagram. In the densification section, the corrugated sandwich core has no energy absorption capability. A good consistency is achieved between theoretical and experimental energy absorption curves. In designing the cushioning package, the cushioning properties can be evaluated by the theoretical model without more experiments. The suggested method to develop the energy absorption diagram for corrugated boards can be used to characterize the cushioning properties and optimize the structures of corrugated sandwich structures.展开更多
The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect...The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.展开更多
To gain a better understanding of thixoforging for the Al_(2)O_(3)-37%Al composite,its mechanical behavior in the pseudo-semi-solid state was studied by isothermal compression tests.The results show that the values of...To gain a better understanding of thixoforging for the Al_(2)O_(3)-37%Al composite,its mechanical behavior in the pseudo-semi-solid state was studied by isothermal compression tests.The results show that the values of peak stress obviously decrease with increasing temperature and decreasing strain rate.The compressive true stress-strain curves of the Al_(2)O_(3)-37%Al composite can be divided into four stages.They are rapidly ascending,decreasing,steady and slowly ascending.Moreover,the main deformation mechanism controlling deformation of the composite in the pseudo-semi-solid state is the sliding or rotary movement between solid particles.展开更多
To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial te...To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial tensile tests were conducted at room temperature.A new flow stress model,which could predict the flow behavior of the tested steels at different tempering temperatures more efficiently,was established.The relationship between mobile dislocation density and strain hardening exponent was discussed based on the dislocation-stress relation.Arrhenius equation and an inverse proportional function were adopted to describe the mobile dislocation,and two mathematical models were established to describe the relationship between tempering temperature and strain hardening exponent.Nonlinear regression analysis was applied to the Arrhenius type model,hence,the activation energy was determined to be 37.6kJ/mol.Moreover,the square of correlation coefficient was 0.985,which indicated a high reliability between the fitted curve and experimental data.By comparison with the Arrhenius type curve,the general trend of the inverse proportional fitting curve was coincided with the experimental data points except of some fitting errors.Thus,the Arrhenius type model can be adopted to predict the strain hardening exponent at different tempering temperatures.展开更多
An environmental friendly carbonaceous material- carboresP (one of the Carbores series materials) was investigated for the production of MgO-C refractories in laboratory scale and field tests. The MgO-C specimens we...An environmental friendly carbonaceous material- carboresP (one of the Carbores series materials) was investigated for the production of MgO-C refractories in laboratory scale and field tests. The MgO-C specimens were produced with different CarboresP contents. The bulk density (180℃ × 48h), CCS, apparent porosity (1000℃ ×3h ) and hot modulus of rupture (1400℃ ×0. 5h ) were tested and contrasted. The appropriate amount of carboresP was 1.0%. The amount of metallic additions can be partially substituted (reduced to 1.5% ). The microstructure of resin-carboresP binder is anisotropic structure with high oxidation resistance and good thermal-shock stability. The Stress/strain curve indicates that the characteristic length, (LCH) of MgO-C brick with resin/CarboresP bonding has been improved, which means the MgO-C bricks have good mechanical flexibility and stresses absorbability. Field tests were done in slag line of a 40t LF-VD refining steel ladle using Resin/CarboresP bonded " MT-14A MgO-C bricks. The result shows that the MgO-C bricks by "soft bonding" have good physical properties and excellent workability during production of the bricks . In contrast with traditional MgO-C brick used for secondary refining furnaces, the spalling tendency of the bricks could be reduced significantly. The average lining life of the resin/ CarboresP bricks has increased by 18. 4% comparing with the pure resin-bonded types.展开更多
A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material c...A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material considered. The resulting curve of critical fracture of mixed mode cracks shows that the present fracture is efficient and more accurate than the previous criteria.展开更多
In this research, a series of hollow glass powder(HGP) reinforced magnetorheological plastomers(MRPs)were prepared to improve the impact resistance of the materials, and the dynamic compressive properties of MRPs unde...In this research, a series of hollow glass powder(HGP) reinforced magnetorheological plastomers(MRPs)were prepared to improve the impact resistance of the materials, and the dynamic compressive properties of MRPs under high strain rate were investigated by using a split Hopkinson pressure bar(SHPB)system equipped with a customized magnetic device. Experimental results showed the HGPs greatly enhanced the yield stresses of the MRPs. Especially, for MRPs with 9 vol.% carbonyl iron powders(CIPs), the magnetic-induced yield stress increased from 7.3 MPa to 17.1 MPa(134% increased) by adding 18 vol.%HGPs. The particle structures in MRPs were further simulated and the corresponding intergranular stress was calculated to study the enhancement effect of HGPs. The simulated results showed that more compact structures were formed with the excluded volume caused by secondary HGPs, so the yield stresses of the MRPs increased under a magnetic field. However, when the mass ratio of HGP to CIP was larger than 0.67, HGPs would hinder the formation of chain-like structures and reduce the magneto-mechanical properties. As a result, the replacing of CIPs by HGPs was proven to be an excellent strategy to improve the dynamic properties of MRPs.展开更多
The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semiso...The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.展开更多
Recently,the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention.In this study,research on the compressive performance of coral aggregate concre...Recently,the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention.In this study,research on the compressive performance of coral aggregate concrete(CAC)confined using steel stirrups with anti-rust treatment was experimentally conducted.A total of 45 specimens were cast,including 9 specimens without stirrups and under different strength grades(C20,C30,and C40)and 36 specimens under different strength grades(C20,C30,and C40).Moreover,three stirrup levels(rectangular,diamond-shaped compound,and spiral stirrups)and different stirrup spacings(40,50,60,and 70 mm)were used.Subsequently,the stress−strain curves of specimens subjected to axial loading were measured.The effects of the stirrup spacing and stirrup configurations on the stress and strain were investigated,respectively,and the lateral effective stress of the different stirrups was calculated based on the cohesive-elastic ring model and modified elastic beam theory.Moreover,a damageconstitutive model of CAC considering the lateral stress was set up based on damage mechanics theory.The results indicated an increase in the stress and strain with a decrease in the stirrup spacing,and the adopted stirrup ratio had a better strengthening effect than the different concrete grades,and the variation in the deformation was restricted by the performance of coral coarse aggregate(CA).However,an increment in the lateral strain was observed with an increase in the axial strain.The lateral stress model showed a good agreement with the experimental data,and the proposed damageconstitutive model had a good correlation with the measured stress−strain curves.展开更多
文摘An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.
基金Funded by the National Natural Science Foundation of China (No.50905120)
文摘Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and densification. By considering the structure factors of multi-layer corrugated boards, the energy absorption model is obtained and characterized by the structure factors of corrugated cell-wall. The model is standardized by the solid modulus and it is universal for corrugated structures of different basis material. In the liner-elastic section, with the increase of the load, the energy absorption per unit volume of multi-layer corrugated boards gradually increases; in the sub-buckling section going with local collapse, the compression resistance of multi-layer corrugated boards goes on under a nearly constant load, but the energy absorption per unit volume rapidly increases with the increase of the compression strain. It is shown as an ascending curve in the energy absorption diagram. In the densification section, the corrugated sandwich core has no energy absorption capability. A good consistency is achieved between theoretical and experimental energy absorption curves. In designing the cushioning package, the cushioning properties can be evaluated by the theoretical model without more experiments. The suggested method to develop the energy absorption diagram for corrugated boards can be used to characterize the cushioning properties and optimize the structures of corrugated sandwich structures.
基金supported by the National Natural Science Foundation of China(Grant No.50075053).
文摘The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.
基金Project(50705018)supported by the National Natural Science Foundation of ChinaProject(20070420847)supported by the Postdoctor Foundation of ChinaProject(LBH-Z07140)supported by the Postdoctor Foundation of Heilongjiang。
文摘To gain a better understanding of thixoforging for the Al_(2)O_(3)-37%Al composite,its mechanical behavior in the pseudo-semi-solid state was studied by isothermal compression tests.The results show that the values of peak stress obviously decrease with increasing temperature and decreasing strain rate.The compressive true stress-strain curves of the Al_(2)O_(3)-37%Al composite can be divided into four stages.They are rapidly ascending,decreasing,steady and slowly ascending.Moreover,the main deformation mechanism controlling deformation of the composite in the pseudo-semi-solid state is the sliding or rotary movement between solid particles.
文摘To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial tensile tests were conducted at room temperature.A new flow stress model,which could predict the flow behavior of the tested steels at different tempering temperatures more efficiently,was established.The relationship between mobile dislocation density and strain hardening exponent was discussed based on the dislocation-stress relation.Arrhenius equation and an inverse proportional function were adopted to describe the mobile dislocation,and two mathematical models were established to describe the relationship between tempering temperature and strain hardening exponent.Nonlinear regression analysis was applied to the Arrhenius type model,hence,the activation energy was determined to be 37.6kJ/mol.Moreover,the square of correlation coefficient was 0.985,which indicated a high reliability between the fitted curve and experimental data.By comparison with the Arrhenius type curve,the general trend of the inverse proportional fitting curve was coincided with the experimental data points except of some fitting errors.Thus,the Arrhenius type model can be adopted to predict the strain hardening exponent at different tempering temperatures.
文摘An environmental friendly carbonaceous material- carboresP (one of the Carbores series materials) was investigated for the production of MgO-C refractories in laboratory scale and field tests. The MgO-C specimens were produced with different CarboresP contents. The bulk density (180℃ × 48h), CCS, apparent porosity (1000℃ ×3h ) and hot modulus of rupture (1400℃ ×0. 5h ) were tested and contrasted. The appropriate amount of carboresP was 1.0%. The amount of metallic additions can be partially substituted (reduced to 1.5% ). The microstructure of resin-carboresP binder is anisotropic structure with high oxidation resistance and good thermal-shock stability. The Stress/strain curve indicates that the characteristic length, (LCH) of MgO-C brick with resin/CarboresP bonding has been improved, which means the MgO-C bricks have good mechanical flexibility and stresses absorbability. Field tests were done in slag line of a 40t LF-VD refining steel ladle using Resin/CarboresP bonded " MT-14A MgO-C bricks. The result shows that the MgO-C bricks by "soft bonding" have good physical properties and excellent workability during production of the bricks . In contrast with traditional MgO-C brick used for secondary refining furnaces, the spalling tendency of the bricks could be reduced significantly. The average lining life of the resin/ CarboresP bricks has increased by 18. 4% comparing with the pure resin-bonded types.
文摘A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material considered. The resulting curve of critical fracture of mixed mode cracks shows that the present fracture is efficient and more accurate than the previous criteria.
基金financially supported by the National Natural Science Foundation of China (Nos. 12102424, 12132016, 11972343, and 11822209)the National Key R&D Program of China (No. 2018YFB1201703)+1 种基金the Anhui’s Key R&D Program of China (No. 202104a05020009)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB22040502)。
文摘In this research, a series of hollow glass powder(HGP) reinforced magnetorheological plastomers(MRPs)were prepared to improve the impact resistance of the materials, and the dynamic compressive properties of MRPs under high strain rate were investigated by using a split Hopkinson pressure bar(SHPB)system equipped with a customized magnetic device. Experimental results showed the HGPs greatly enhanced the yield stresses of the MRPs. Especially, for MRPs with 9 vol.% carbonyl iron powders(CIPs), the magnetic-induced yield stress increased from 7.3 MPa to 17.1 MPa(134% increased) by adding 18 vol.%HGPs. The particle structures in MRPs were further simulated and the corresponding intergranular stress was calculated to study the enhancement effect of HGPs. The simulated results showed that more compact structures were formed with the excluded volume caused by secondary HGPs, so the yield stresses of the MRPs increased under a magnetic field. However, when the mass ratio of HGP to CIP was larger than 0.67, HGPs would hinder the formation of chain-like structures and reduce the magneto-mechanical properties. As a result, the replacing of CIPs by HGPs was proven to be an excellent strategy to improve the dynamic properties of MRPs.
基金supported by the National Natural Science Foundation of China(No.51375112)the Fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology(No.SKLAB02015003)
文摘The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.
基金This study was supported by the National Natural Science Foundation of China(Grant No.51868005)the Innovation Project of Guangxi Graduate Education(No.YCBZ2022010)Their sponsorships are sincerely appreciated.
文摘Recently,the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention.In this study,research on the compressive performance of coral aggregate concrete(CAC)confined using steel stirrups with anti-rust treatment was experimentally conducted.A total of 45 specimens were cast,including 9 specimens without stirrups and under different strength grades(C20,C30,and C40)and 36 specimens under different strength grades(C20,C30,and C40).Moreover,three stirrup levels(rectangular,diamond-shaped compound,and spiral stirrups)and different stirrup spacings(40,50,60,and 70 mm)were used.Subsequently,the stress−strain curves of specimens subjected to axial loading were measured.The effects of the stirrup spacing and stirrup configurations on the stress and strain were investigated,respectively,and the lateral effective stress of the different stirrups was calculated based on the cohesive-elastic ring model and modified elastic beam theory.Moreover,a damageconstitutive model of CAC considering the lateral stress was set up based on damage mechanics theory.The results indicated an increase in the stress and strain with a decrease in the stirrup spacing,and the adopted stirrup ratio had a better strengthening effect than the different concrete grades,and the variation in the deformation was restricted by the performance of coral coarse aggregate(CA).However,an increment in the lateral strain was observed with an increase in the axial strain.The lateral stress model showed a good agreement with the experimental data,and the proposed damageconstitutive model had a good correlation with the measured stress−strain curves.