Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients rec...Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients receiving treatment in the gastrointestinal surgery and oncology depar tments of a ter tiary Grade A hospital in Sichuan Province,from January 2023 to June 2023,were selected as the study subjects.General information questionnaire,Chinese version of the Perceived Stress Scale(CPSS),and Comprehensive Score Table for Patient-Repor ted Outcome Measures of Economic Toxicity(COST-PROM)were used for data collection.Results:Perceived stress in colorectal cancer patients was classified into 3 latent categories:C1“Low stress-stable type”(19.2%),C2“Moderate stress-uncontrolled type”(23.9%),and C3“High stress-anxious type”(56.9%).The average score of perceived stress was(34.07±5.08).Compared with C1 type,patients with a monthly household income of≤3000 RMB were more likely to belong to the C2 and C3 types(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C2 type,male patients were more likely to belong to C3 type(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C3 type,patients with higher economic toxicity scores were more likely to be classified into C1 and C2 types(P<0.05).Conclusions:Perceived stress in colorectal cancer patients exhibits distinct categorical features.Male gender,lower income,presence of a stoma,and higher economic toxicity are associated with higher levels of perceived stress in colorectal cancer patients.展开更多
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe...A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.展开更多
Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substr...Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substrate, but also changes the properties of the material. In this study,finite element analysis was used to investigate the relationship between the residual thermal stress and the mechanical properties of Al_2O_3 tritium penetration barrier systems. Moreover, the residual thermal stress influenced by factors such as different substrates, temperature, and substrate roughness was also analyzed. The calculation showed that the hardness and elastic modulus increased with increasing compressive stress. However, the hardness and elastic modulus decreased with increasing tensile stress. The systems composed of Al_2O_3 coatings and different substrates exhibited different trends in mechanical properties. As the temperature increased, the hardness and the elastic modulus increased in an Al_2O_3/316 L stainless steel system; the trend was opposite in an Al_2O_3/Si system.Apart from this, the roughness of the substrate surface in the system could magnify the change in hardness and elastic modulus of the coating. Results showed that all these factors led to variation in the mechanical properties of Al_2O_3 tritium permeation barrier systems. Thus, thedetailed reasons for the changes in mechanical properties of these materials need to be analyzed.展开更多
基金supported by the Health and Humanities Research Center Project of Zigong City Key Research Base of Philosophy and Social Sciences(No.JKRWY22-26)。
文摘Objective:To understand the latent categories of perceived stress in colorectal cancer patients and analyze the characteristics of different categories of patients.Methods:A total of 255 colorectal cancer patients receiving treatment in the gastrointestinal surgery and oncology depar tments of a ter tiary Grade A hospital in Sichuan Province,from January 2023 to June 2023,were selected as the study subjects.General information questionnaire,Chinese version of the Perceived Stress Scale(CPSS),and Comprehensive Score Table for Patient-Repor ted Outcome Measures of Economic Toxicity(COST-PROM)were used for data collection.Results:Perceived stress in colorectal cancer patients was classified into 3 latent categories:C1“Low stress-stable type”(19.2%),C2“Moderate stress-uncontrolled type”(23.9%),and C3“High stress-anxious type”(56.9%).The average score of perceived stress was(34.07±5.08).Compared with C1 type,patients with a monthly household income of≤3000 RMB were more likely to belong to the C2 and C3 types(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C2 type,male patients were more likely to belong to C3 type(P<0.05),and patients without a stoma were less likely to belong to C3 type(P<0.05).Compared with C3 type,patients with higher economic toxicity scores were more likely to be classified into C1 and C2 types(P<0.05).Conclusions:Perceived stress in colorectal cancer patients exhibits distinct categorical features.Male gender,lower income,presence of a stoma,and higher economic toxicity are associated with higher levels of perceived stress in colorectal cancer patients.
基金financial supports from the National Natural Science Foundation of China (No.51804349)the China Postdoctoral Science Foundation (No.2018M632986)+1 种基金the Natural Science Foundation of Hunan Province,China (No.2019JJ50766)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China (No.JCKY201851)。
文摘A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.
基金the National Key R&D Program of China(No.2018YFA0707300)the National Natural Science Foundation of China(Nos.51904206,52105390,51905372,51805359)+3 种基金the China Postdoctoral Science Foundation(No.2020M670705)the Natural Science Foundation of Shanxi Province,China(No.201801D221130)the Major Program of National Natural Science Foundation of China(No.U1710254)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province,China(No.2019L0258).
文摘Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substrate, but also changes the properties of the material. In this study,finite element analysis was used to investigate the relationship between the residual thermal stress and the mechanical properties of Al_2O_3 tritium penetration barrier systems. Moreover, the residual thermal stress influenced by factors such as different substrates, temperature, and substrate roughness was also analyzed. The calculation showed that the hardness and elastic modulus increased with increasing compressive stress. However, the hardness and elastic modulus decreased with increasing tensile stress. The systems composed of Al_2O_3 coatings and different substrates exhibited different trends in mechanical properties. As the temperature increased, the hardness and the elastic modulus increased in an Al_2O_3/316 L stainless steel system; the trend was opposite in an Al_2O_3/Si system.Apart from this, the roughness of the substrate surface in the system could magnify the change in hardness and elastic modulus of the coating. Results showed that all these factors led to variation in the mechanical properties of Al_2O_3 tritium permeation barrier systems. Thus, thedetailed reasons for the changes in mechanical properties of these materials need to be analyzed.