AIM: To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture(TSF) development.METHODS: Fresh rabbit tibiae were loaded under compression using a specifically-d...AIM: To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture(TSF) development.METHODS: Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element(FE) model was developed using cross-sectional computer tomography(CT) images scanned from one of the rabbit bones, and a static load of 6 kg(1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation.RESULTS: The experimental tests showed that un der a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis Up to 30 kg, the bone does not fail by elastic buckling however, there are low levels of tensile stress which predominately occur at and adjacent to the anterio border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cycli loading initially fails in tension. The FE model predic tions were consistent with both mechanics theory and the strain gauge results. The model was highly sensi tive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit s tibia. The modelling technique used in the curren study could have applications in the development o human FE models of bone, where, unlike rabbit tibia the model would be relatively insensitive to very sma changes in load position. However, the rabbit mode itself is less beneficial as a tool to understand the me chanical behaviour of TSFs in humans due to the sma size of the rabbit bone and the limitations of human scale CT scanning equipment.CONCLUSION: The current modelling technique could be used to develop human FE models. However, the rabbit model itself has significant limitations in under standing human TSF mechanics.展开更多
Considering the characteristics that the fracture conductivity formed by hydraulic fracturing varies across space and time, a new mathematical model was established for seepage flow in tight gas fractured vertical wel...Considering the characteristics that the fracture conductivity formed by hydraulic fracturing varies across space and time, a new mathematical model was established for seepage flow in tight gas fractured vertical wells which takes into account the effects of dual variable conductivity and stress sensitivity. The Blasingame advanced production decline curves of the model were obtained using the finite element method with hybrid elements. On this basis, the effects of fracture space and time dual variable conductivity and stress sensitivity on Blasingame curve were analyzed. The study shows that the space variable conductivity mainly reduces decline curve value at the early stage; the time variable conductivity can result in drops of the production and the production integral curves, leading to a S-shaped curve; dual variable conductivity is the superposition of the effects given by the two variable conductivities; both time and space variable conductivities cannot delay the time with which the formation fluid flow reaches the quasi-steady state. The stress sensitivity reduces the curve value gradually rather than sharply, delaying the time the flow reaching the quasi-steady state. Ignoring the effects of variable conductivity and stress sensitivity will not affect the estimation on well controlled dynamic reserves. However, it can result in large errors in the interpretation of fractures and reservoir parameters. Conventional advanced production decline analyses of a tight gas fractured well in the Sulige gas field showed that the new model is more effective and reliable than the conventional model, and thus it can be widely applied in advanced production decline analysis of wells with the same characteristics in other gas fields.展开更多
Intracanal instrument fracture is an unpredictable and problematic occurrence that can prevent adequatecleaning and shaping procedures and influence the prognosis of endodontic treatment. The prevalence of instrument ...Intracanal instrument fracture is an unpredictable and problematic occurrence that can prevent adequatecleaning and shaping procedures and influence the prognosis of endodontic treatment. The prevalence of instrument fracture is reported to range between 0.28% and 16.2%. This article presents an overview of the prevention and management of instruments fractured during endodontic therapy on the basis of literature retrieved from Pub Med and selected journal searches. Instrument fracture occurs because of reduced metal fatigue and/or torsional resistance. The reasons include canal morphology and curvature, manufacturing processes and instrument design, instrument use times and technique, rotational speeds and operator experience. With the development of various equipment and techniques, most of the retained instrument separations can be removed safely. However, in canals without associated periapical disease not every fractured separation should be removed from difficult locations because of the increased risk for root perforation and fracture. In difficult cases, either retain or bypass the fragment in the root canal and ensure regular follow-up reviews. Fractured instruments retained in the presence of periapical disease reduce significantly the prognosis of endodontically treated teeth, indicating a greater need to attempt the removal or bypass of the file separations. Apical surgery might be required in some instances, emphasizing the importance of preventing instrument fracture.展开更多
Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture...Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.展开更多
AIM: To study the root fracture resistance after root canal preparation with Ni-Ti rotary instruments and stainless hand instruments by means of meta-analysis.METHODS: Literature was researched in CNKI and CBMDisc, Pu...AIM: To study the root fracture resistance after root canal preparation with Ni-Ti rotary instruments and stainless hand instruments by means of meta-analysis.METHODS: Literature was researched in CNKI and CBMDisc, Pub Med, CALIS, Proquest, Web of Scienceand 11 kinds of Chinese or English dentistry journals. Retrieval time on Internet was in all years and hand retrieval time was from January 2013 to October 2013. The literatures were selected through reading abstracts and full texts by two reviewers independently and Revman 5 software was used to analysize the literature. RESULTS: Six articles met the inclusion criteria. According to Meta-analysis of tooth root bending properties, total standardized mean difference(SMD) was 0.63(95%CI:-0.24-1.50, P > 0.05). That indicated there was no statistically significant between the two groups. Subgroup analysis was carried out. SMD were 2.22(95%CI: 0.23-4.20, P < 0.05) and-0.61(95%CI:-1.05--0.17, P < 0.05) when the premolar teeth with a single canal or the mesiobuccal roots of molars were used as the materials for tests to compare the effects of different root canal preparation methods on root fracture resistance. That only indicated that there were statistically significant in two subgroups.CONCLUSION: In vitro experiments, the effects on the fracture resistance of root had no statistical difference with Ni-Ti rotary instruments and stainless steel hand instruments in root canal preparation.展开更多
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation...Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering.展开更多
Anti symmetric four point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughne...Anti symmetric four point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughness of rock. Numerical calculations show that the occurrence of Mode Ⅱ fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode Ⅱ fracture toughness K ⅡC decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness.展开更多
Simultaneous multistage hydraulic fracturing of unconventional gas shale in parallel multilateral wells is an effective technique to raise the connectivity of the reservoir to the wellbore and improve reservoir permea...Simultaneous multistage hydraulic fracturing of unconventional gas shale in parallel multilateral wells is an effective technique to raise the connectivity of the reservoir to the wellbore and improve reservoir permeability for an economical production. However, this technique should be accompanied with some optimization procedures to obtain an efficiently fractured reservoir with the highest production and the lowest cost. In unconventional hydraulic fracturing, fracture deviation/collapse and trapping are familiar phenomena which occur when a non-optimized fracturing pattern is used. These problems occur respectively when stress shadow size has not been considered in optimization and fracturing pressure is higher than the available pressure in the sealed section. Therefore, in an optimized hydraulic fracturing,having straight fractures with no deviation or collapse needs consideration of stress shadow effect(SSE).Apart from that, having efficiently propagated fractures to the extent of the reservoir without any fracture trap requires consideration of stress intensity factor(SIF) and aperture. SSE was studied and published by the authors in 2014. For the case of SIF, investigating any change in mode I SIF and aperture with different influencing variables such as fracture geometry and pattern are studied in the current research work. Three different fracturing techniques are assumed as multistage fracturing, simultaneous single-stage fracturing, and simultaneous multistage fracturing techniques. Since obtaining SIF for threedimensional fractures is a challenging issue, a stress ratio technique is used for calculation of SIF ratios of different fracturing scenarios compared to the case of a single fracture. Therefore, changes of SIF for different fracturing schemes are estimated and analyzed to understand whether or not a fracturing scheme is efficient and all the spaced perforations are activated and change to hydraulic fractures.展开更多
Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I f...Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I fracture test using special loading fixtures as per ASTM standards. Fracture toughness was determined experimentally for along and across the fiber orientation of the specimen. Results indicated that the cracked specimens are tougher along the fiber orientations as compared with across the fiber orientations. A similar fracture test was simulated using finite element analysis software ANSYS. Critical stress intensity factor (K) was calculated at fracture/failure using displacement extrapolation method, for both along and across the fiber orientations. The fractured surfaces of the glasscarbon epoxy composite under mode-I loading condition was examined by electron microscope.展开更多
In this paper, we discuss J-integrals near models I and II crack tips for the plates of linear-elastic isotropic homogeneous material and orthotropic composite material, using the theories of complex function and calc...In this paper, we discuss J-integrals near models I and II crack tips for the plates of linear-elastic isotropic homogeneous material and orthotropic composite material, using the theories of complex function and calculus, and obtain the result as follows: (1) The various J-integrals are transformed into standard form of line integrals with respect to coordinates: J = ∫rP(x, y)dx+Q(x, y)dy. (2) Independence of path of the various J-integrals is proved. (3) Computing formulae of J-integrals are derived.展开更多
Anti symmetric four point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode Ⅱ...Anti symmetric four point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock, K ⅡC . Numerical and experimental results show that the distance between the inner and outer loading points, L 1+ L 2, has a great influence on stresses at notch tip and fracture mode. When L 1+ L 2>0.5 L or 0.1 L < L 1+ L 2<0.5 L , maximum principal stress σ 1 exceeds the tensile strength σ t. The ratio of τ max / σ 1 is relatively low or high and thus Mode Ⅰ or mixed mode fracture occurs. When L 1+ L 2< 0.1 L , σ 1 is smaller than σ t and the ratio of τ max / σ 1 is much higher, which facilitates the occurrence of Mode Ⅱ fracture.展开更多
Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability var...Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability varies with experimental law of the pseudo pressure drop, according to concepts of perturbable ellipses and equivalent developing regulations, the calculation method of stable production of hydraulically fractured gas well in low permeability reservoirs is investigated with threshold pressure. And productivity curve is drawn and analyzed. The result shows that, permeability modulus and threshold pressure have effect on production of fractured gas well. The higher the permeability modulus and the threshold pressure, the lower the production is. Therefore, the impact of stress sensitive and threshold pressure must he considered when analyzing the productivity of vertical fracture well in low permeability gas reservoir.展开更多
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa...Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.展开更多
Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable s...Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher.展开更多
Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal fi...Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.展开更多
Background: Postoperative pubic or ischial stress fracture may be a complication after curved periacetabular osteotomy (CPO). The discontinuity of the superior pubic rami is a risk factor for this complication. We inv...Background: Postoperative pubic or ischial stress fracture may be a complication after curved periacetabular osteotomy (CPO). The discontinuity of the superior pubic rami is a risk factor for this complication. We investigated the stress field differences in standing and sitting positions after CPO. Methods: We used finite element analysis to assess the effects of inferior pubic rami and ischial fractures with or without discontinuity of superior pubic rami. We used the “union model”, obtained from a bony union at the osteotomy site of the superior pubic rami from 38-year-old woman who had undergone CPO for left hip dysplasia. We deleted the bony union region and created a discontinuity in the superior pubic rami equal to the non-union, creating the “discontinuity model”. We compared the stress field and stress value in the simulated standing and half weight-bearing positions on the operative side, one-legged standing position on the non-operative side, and the sitting position. Findings: In 4 cases, the inferior rami experienced the highest stress. Stress values in the discontinuity model were higher than those in the union model: 1.7 times in the case of one-legged standing on the operative side, 2.4 times in the case of half weight-bearing on the operative side, 3.8 times in the case of one-legged standing on the non-operative side, and 2.0 times in the sitting position, respectively. Interpretation: We recommend patients delay weight bearing on the operative side, avoid the sitting position as long as possible, and sit down slowly to prevent inferior pubic rami and ischial fractures after CPO.展开更多
背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊...背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊柱胸腰段骨折中的应用。方法:在中英文文献数据库PubMed、Web of Science、中国知网中检索2024年3月之前发表的有限元分析法在脊柱胸腰段骨折中应用的相关文献,中英文检索词为“有限元分析法(finite element analysis methods)”“生物力学(biomechanical phenomena)”“应力分析(stress analysis)”“胸腰椎骨折(thoracolumbar fractures)”“脊柱骨折(spinal fractures)”,最终纳入55篇文献。结果与结论:①通过有限元法对不同病因(骨质疏松性、创伤性、病理性)导致的胸腰椎骨折进行探索,有利于对各种类型胸腰椎骨折的生物力学特征有更加深刻的认识,完善对胸腰椎骨折的个性化和精细化治疗;②单一样本或数量较少样本的有限元分析具有偶然性,未来的有限元分析需要更大的样本数量来减少样本偶然性带来的误差;③仅骨骼的刚性结构不能满足实物的完整性所具有的生物力学工况,未来的有限元模型需要尽可能纳入实物的所有结构(例如肌肉、韧带等软组织);④有限元法在骨质疏松性和创伤性胸腰椎骨折方面的研究较多,未来需要进行更加深入的研究;病理性胸腰椎骨折领域的研究较少,未来研究范围较广。展开更多
文摘AIM: To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture(TSF) development.METHODS: Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element(FE) model was developed using cross-sectional computer tomography(CT) images scanned from one of the rabbit bones, and a static load of 6 kg(1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation.RESULTS: The experimental tests showed that un der a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis Up to 30 kg, the bone does not fail by elastic buckling however, there are low levels of tensile stress which predominately occur at and adjacent to the anterio border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cycli loading initially fails in tension. The FE model predic tions were consistent with both mechanics theory and the strain gauge results. The model was highly sensi tive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit s tibia. The modelling technique used in the curren study could have applications in the development o human FE models of bone, where, unlike rabbit tibia the model would be relatively insensitive to very sma changes in load position. However, the rabbit mode itself is less beneficial as a tool to understand the me chanical behaviour of TSFs in humans due to the sma size of the rabbit bone and the limitations of human scale CT scanning equipment.CONCLUSION: The current modelling technique could be used to develop human FE models. However, the rabbit model itself has significant limitations in under standing human TSF mechanics.
基金Supported by the China National Science and Technology Major Project(2016ZX05015-005)
文摘Considering the characteristics that the fracture conductivity formed by hydraulic fracturing varies across space and time, a new mathematical model was established for seepage flow in tight gas fractured vertical wells which takes into account the effects of dual variable conductivity and stress sensitivity. The Blasingame advanced production decline curves of the model were obtained using the finite element method with hybrid elements. On this basis, the effects of fracture space and time dual variable conductivity and stress sensitivity on Blasingame curve were analyzed. The study shows that the space variable conductivity mainly reduces decline curve value at the early stage; the time variable conductivity can result in drops of the production and the production integral curves, leading to a S-shaped curve; dual variable conductivity is the superposition of the effects given by the two variable conductivities; both time and space variable conductivities cannot delay the time with which the formation fluid flow reaches the quasi-steady state. The stress sensitivity reduces the curve value gradually rather than sharply, delaying the time the flow reaching the quasi-steady state. Ignoring the effects of variable conductivity and stress sensitivity will not affect the estimation on well controlled dynamic reserves. However, it can result in large errors in the interpretation of fractures and reservoir parameters. Conventional advanced production decline analyses of a tight gas fractured well in the Sulige gas field showed that the new model is more effective and reliable than the conventional model, and thus it can be widely applied in advanced production decline analysis of wells with the same characteristics in other gas fields.
文摘Intracanal instrument fracture is an unpredictable and problematic occurrence that can prevent adequatecleaning and shaping procedures and influence the prognosis of endodontic treatment. The prevalence of instrument fracture is reported to range between 0.28% and 16.2%. This article presents an overview of the prevention and management of instruments fractured during endodontic therapy on the basis of literature retrieved from Pub Med and selected journal searches. Instrument fracture occurs because of reduced metal fatigue and/or torsional resistance. The reasons include canal morphology and curvature, manufacturing processes and instrument design, instrument use times and technique, rotational speeds and operator experience. With the development of various equipment and techniques, most of the retained instrument separations can be removed safely. However, in canals without associated periapical disease not every fractured separation should be removed from difficult locations because of the increased risk for root perforation and fracture. In difficult cases, either retain or bypass the fragment in the root canal and ensure regular follow-up reviews. Fractured instruments retained in the presence of periapical disease reduce significantly the prognosis of endodontically treated teeth, indicating a greater need to attempt the removal or bypass of the file separations. Apical surgery might be required in some instances, emphasizing the importance of preventing instrument fracture.
文摘Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.
文摘AIM: To study the root fracture resistance after root canal preparation with Ni-Ti rotary instruments and stainless hand instruments by means of meta-analysis.METHODS: Literature was researched in CNKI and CBMDisc, Pub Med, CALIS, Proquest, Web of Scienceand 11 kinds of Chinese or English dentistry journals. Retrieval time on Internet was in all years and hand retrieval time was from January 2013 to October 2013. The literatures were selected through reading abstracts and full texts by two reviewers independently and Revman 5 software was used to analysize the literature. RESULTS: Six articles met the inclusion criteria. According to Meta-analysis of tooth root bending properties, total standardized mean difference(SMD) was 0.63(95%CI:-0.24-1.50, P > 0.05). That indicated there was no statistically significant between the two groups. Subgroup analysis was carried out. SMD were 2.22(95%CI: 0.23-4.20, P < 0.05) and-0.61(95%CI:-1.05--0.17, P < 0.05) when the premolar teeth with a single canal or the mesiobuccal roots of molars were used as the materials for tests to compare the effects of different root canal preparation methods on root fracture resistance. That only indicated that there were statistically significant in two subgroups.CONCLUSION: In vitro experiments, the effects on the fracture resistance of root had no statistical difference with Ni-Ti rotary instruments and stainless steel hand instruments in root canal preparation.
基金funded by the joint fund of the National Key Research and Development Program of China(No.2021YFC2902101)National Natural Science Foundation of China(Grant No.52374084)+1 种基金Open Foundation of National Energy shale gas R&D(experiment) center(2022-KFKT-12)the 111 Project(B17009)。
文摘Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering.
基金TheNationalNaturalScienceFoundationofChina (No :496 72 16 4)
文摘Anti symmetric four point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughness of rock. Numerical calculations show that the occurrence of Mode Ⅱ fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode Ⅱ fracture toughness K ⅡC decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness.
基金Oklahoma Department of Transportation (ODOT)Oklahoma Transportation Center for their financial support during the course of this study
文摘Simultaneous multistage hydraulic fracturing of unconventional gas shale in parallel multilateral wells is an effective technique to raise the connectivity of the reservoir to the wellbore and improve reservoir permeability for an economical production. However, this technique should be accompanied with some optimization procedures to obtain an efficiently fractured reservoir with the highest production and the lowest cost. In unconventional hydraulic fracturing, fracture deviation/collapse and trapping are familiar phenomena which occur when a non-optimized fracturing pattern is used. These problems occur respectively when stress shadow size has not been considered in optimization and fracturing pressure is higher than the available pressure in the sealed section. Therefore, in an optimized hydraulic fracturing,having straight fractures with no deviation or collapse needs consideration of stress shadow effect(SSE).Apart from that, having efficiently propagated fractures to the extent of the reservoir without any fracture trap requires consideration of stress intensity factor(SIF) and aperture. SSE was studied and published by the authors in 2014. For the case of SIF, investigating any change in mode I SIF and aperture with different influencing variables such as fracture geometry and pattern are studied in the current research work. Three different fracturing techniques are assumed as multistage fracturing, simultaneous single-stage fracturing, and simultaneous multistage fracturing techniques. Since obtaining SIF for threedimensional fractures is a challenging issue, a stress ratio technique is used for calculation of SIF ratios of different fracturing scenarios compared to the case of a single fracture. Therefore, changes of SIF for different fracturing schemes are estimated and analyzed to understand whether or not a fracturing scheme is efficient and all the spaced perforations are activated and change to hydraulic fractures.
文摘Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I fracture test using special loading fixtures as per ASTM standards. Fracture toughness was determined experimentally for along and across the fiber orientation of the specimen. Results indicated that the cracked specimens are tougher along the fiber orientations as compared with across the fiber orientations. A similar fracture test was simulated using finite element analysis software ANSYS. Critical stress intensity factor (K) was calculated at fracture/failure using displacement extrapolation method, for both along and across the fiber orientations. The fractured surfaces of the glasscarbon epoxy composite under mode-I loading condition was examined by electron microscope.
文摘In this paper, we discuss J-integrals near models I and II crack tips for the plates of linear-elastic isotropic homogeneous material and orthotropic composite material, using the theories of complex function and calculus, and obtain the result as follows: (1) The various J-integrals are transformed into standard form of line integrals with respect to coordinates: J = ∫rP(x, y)dx+Q(x, y)dy. (2) Independence of path of the various J-integrals is proved. (3) Computing formulae of J-integrals are derived.
文摘Anti symmetric four point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock, K ⅡC . Numerical and experimental results show that the distance between the inner and outer loading points, L 1+ L 2, has a great influence on stresses at notch tip and fracture mode. When L 1+ L 2>0.5 L or 0.1 L < L 1+ L 2<0.5 L , maximum principal stress σ 1 exceeds the tensile strength σ t. The ratio of τ max / σ 1 is relatively low or high and thus Mode Ⅰ or mixed mode fracture occurs. When L 1+ L 2< 0.1 L , σ 1 is smaller than σ t and the ratio of τ max / σ 1 is much higher, which facilitates the occurrence of Mode Ⅱ fracture.
文摘Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability varies with experimental law of the pseudo pressure drop, according to concepts of perturbable ellipses and equivalent developing regulations, the calculation method of stable production of hydraulically fractured gas well in low permeability reservoirs is investigated with threshold pressure. And productivity curve is drawn and analyzed. The result shows that, permeability modulus and threshold pressure have effect on production of fractured gas well. The higher the permeability modulus and the threshold pressure, the lower the production is. Therefore, the impact of stress sensitive and threshold pressure must he considered when analyzing the productivity of vertical fracture well in low permeability gas reservoir.
基金the National Natural Science Foundation of China Projects under Grant[Nos.51871211,U21A2049,52071220,51701129 and 51971054]Liaoning Province’s project of"Revitalizing Liaoning Talents"(XLYC1907062)+10 种基金the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province(No.2019-BS-200)the Strategic New Industry Development Special Foundation of Shenzhen(JCYJ20170306141749970)the funds of International Joint Laboratory for Light AlloysLiaoning Bai Qian Wan Talents Programthe Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)National Key Research and Development Program of China under Grant[Nos.2017YFB0702001 and 2016YFB0301105]the Innovation Fund of Institute of Metal Research(IMR)Chinese Academy of Sciences(CAS)the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205the Fundamental Research Fund for the Central Universities under Grant[No.N2009006]Bintech-IMR R&D Program[No.GYY-JSBU-2022-009]。
文摘Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism.
基金supported by the China Postdoctoral Science Foundation(2021M702304)Natural Science Foundation of Shandong Province(ZR2021QE260).
文摘Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher.
文摘Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.
文摘Background: Postoperative pubic or ischial stress fracture may be a complication after curved periacetabular osteotomy (CPO). The discontinuity of the superior pubic rami is a risk factor for this complication. We investigated the stress field differences in standing and sitting positions after CPO. Methods: We used finite element analysis to assess the effects of inferior pubic rami and ischial fractures with or without discontinuity of superior pubic rami. We used the “union model”, obtained from a bony union at the osteotomy site of the superior pubic rami from 38-year-old woman who had undergone CPO for left hip dysplasia. We deleted the bony union region and created a discontinuity in the superior pubic rami equal to the non-union, creating the “discontinuity model”. We compared the stress field and stress value in the simulated standing and half weight-bearing positions on the operative side, one-legged standing position on the non-operative side, and the sitting position. Findings: In 4 cases, the inferior rami experienced the highest stress. Stress values in the discontinuity model were higher than those in the union model: 1.7 times in the case of one-legged standing on the operative side, 2.4 times in the case of half weight-bearing on the operative side, 3.8 times in the case of one-legged standing on the non-operative side, and 2.0 times in the sitting position, respectively. Interpretation: We recommend patients delay weight bearing on the operative side, avoid the sitting position as long as possible, and sit down slowly to prevent inferior pubic rami and ischial fractures after CPO.
文摘背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊柱胸腰段骨折中的应用。方法:在中英文文献数据库PubMed、Web of Science、中国知网中检索2024年3月之前发表的有限元分析法在脊柱胸腰段骨折中应用的相关文献,中英文检索词为“有限元分析法(finite element analysis methods)”“生物力学(biomechanical phenomena)”“应力分析(stress analysis)”“胸腰椎骨折(thoracolumbar fractures)”“脊柱骨折(spinal fractures)”,最终纳入55篇文献。结果与结论:①通过有限元法对不同病因(骨质疏松性、创伤性、病理性)导致的胸腰椎骨折进行探索,有利于对各种类型胸腰椎骨折的生物力学特征有更加深刻的认识,完善对胸腰椎骨折的个性化和精细化治疗;②单一样本或数量较少样本的有限元分析具有偶然性,未来的有限元分析需要更大的样本数量来减少样本偶然性带来的误差;③仅骨骼的刚性结构不能满足实物的完整性所具有的生物力学工况,未来的有限元模型需要尽可能纳入实物的所有结构(例如肌肉、韧带等软组织);④有限元法在骨质疏松性和创伤性胸腰椎骨折方面的研究较多,未来需要进行更加深入的研究;病理性胸腰椎骨折领域的研究较少,未来研究范围较广。