期刊文献+
共找到15,031篇文章
< 1 2 250 >
每页显示 20 50 100
Coupling control on pillar stress concentration and surface cracks in shallow multi-seam mining 被引量:7
1
作者 Qingxiang Huang Junwu Du +1 位作者 Jie Chen Yanpeng He 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期95-101,共7页
In order to ensure safe mining and reduce surface damage in shallow multi-seam mining,the failure characteristics of interburden strata with different coal pillars offset distances between pillars in the upper and low... In order to ensure safe mining and reduce surface damage in shallow multi-seam mining,the failure characteristics of interburden strata with different coal pillars offset distances between pillars in the upper and lower seams,the distribution characteristics of stress concentration in coal pillars,and the development characteristics of stratum cracks and subsidence were investigated by physical and UDEC2D simulation.Meanwhile,the effect of different coal pillar offset distances on stress concentration of coal pillar and development of stratum cracks were studied.Based on those results,a formula for safe mining and reducing surface damage was established,which provided a theoretical basis for safe and environmentally friendly mining in shallow multi-seam.According to the results,the optimal coal pillar offset distance(the side to side horizontal distance of the upper and lower coal pillars)between the upper and lower coal seams was developed to reduce the stress concentration of coal pillars and surface damage.The results of this study have been applied in Ningtiaota coal mine and have achieved good results in safe and environmentally friendly mining. 展开更多
关键词 Shallow multi-seam Coal pillar offset stress concentration Surface cracks Strata control
下载PDF
RESIDUAL STRESS CONCENTRATION AND ITS EFFECTS ON FATIGUE LIMIT AND SHORT CRACK GROWTH
2
作者 HE Jiawen HU Naisai ZHANG Dingquan Xi’an Jiaotong University,Xi’an,China Professor,Research Institute for Strength of Metals,Xi’an Jiaotong University,Xi’an 710049,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第2期96-100,共5页
Residual stress concentration at a notch depends on both notch geometry and yield strength of the material.It varies through the depth,and its magnitude may be higher than the theoretical one.Compressive residual.stre... Residual stress concentration at a notch depends on both notch geometry and yield strength of the material.It varies through the depth,and its magnitude may be higher than the theoretical one.Compressive residual.stress concentration at the notch of shot-peened specimen of soft material is easily to he relaxed,with the surface damage during shot-peening results in a mi- nor contribution to the fatigue limit.Compressive residual stress increases the crack closure effect at the notch and may lead to a non-propagating crack. 展开更多
关键词 residual stress stress concentration FATIGUE
下载PDF
Effect of icosahedral phase formation on the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li(in wt.%)based alloys 被引量:1
3
作者 Shuo Wang Daokui Xu +2 位作者 Dongliang Wang Zhiqiang Zhang Baojie Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期225-236,共12页
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa... Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism. 展开更多
关键词 Magnesium-lithium alloy stress corrosion cracking I-phase Fracture analysis
下载PDF
Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate 被引量:7
4
作者 Lin Fan Cui-wei Du +1 位作者 Zhi-yong Liu Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期645-652,共8页
Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensi... Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips. 展开更多
关键词 pipeline steel stress corrosion cracking BICARBONATE passive films
下载PDF
The Enrichment of Chloride Anion in the Occluded Cell and Its Effect on Stress Corrosion Crack of 304 Stainless Steel in Low Chloride Concentration Solution 被引量:11
5
作者 吕国诚 许淳淳 +2 位作者 吕忆民 程海东 何宗虎 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期646-649,共4页
The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the en... The enrichment of chloride anion within the occluded cell (OC) for Type 304 austenitic stainless steel in low chloride concentration solution has been investigated by means of a simulated OC. The influence of the enrichment of chloride anion on stress corrosion crack (SCC) of Type 304 stainless steel has been studied. It was observed that the amount of chloride anion migration was proportional to the charge flowing through the anode. Owning to the effects of enrichment of chloride anion, low chloride concentration solution could induce SCC for Type 304 stainless steel. 展开更多
关键词 304 austenitic stainless steel occluded cells enrichment of chloride anion stress corrosion crack
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
6
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer stress corrosion cracking Oil and gas pipelines
下载PDF
Relationship between Critical Hydrogen Concentration and Applied Stress for Hydrogen Induced Cracking in 0.2 wt—%C Annealed Plain Steel
7
作者 张柏玉 唐祥云 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第6期447-449,共3页
1.IntroductionSo far there are few people who studythe relationship between the criticalhydrogen concentration and the stress forhvdrogen induced cracking (CCHIC)quantitatively.Several researchers have cal-culated the... 1.IntroductionSo far there are few people who studythe relationship between the criticalhydrogen concentration and the stress forhvdrogen induced cracking (CCHIC)quantitatively.Several researchers have cal-culated the CCHIC of steels under no stressby means of H permeation method,but no 展开更多
关键词 hydrogen induced cracking plain steel critical hydrogen concentration stress
下载PDF
Effect of Blasting Stress Wave on Dynamic Crack Propagation 被引量:1
8
作者 Huizhen Liu Duanying Wan +2 位作者 Meng Wang Zheming Zhu Liyun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期349-368,共20页
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact... Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice. 展开更多
关键词 crack propagation blasting stress wave dynamic stress intensity factor pressure waveform numerical simulation
下载PDF
Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations 被引量:2
9
作者 Jin-Hua Liu Yue-Ming Tan +5 位作者 Yuan Wang Bin Gong Er Jiang Yong-Fu Zhao Jia-Zhen Wang Shan-Xiu Cong 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期110-116,共7页
The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribut... The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer. 展开更多
关键词 SUPERCRITICAL water Dissolved oxygen stress corrosion crackING AUSTENITIC STAINLESS STEELS EPMA
下载PDF
Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy 被引量:20
10
作者 陈送义 陈康华 +2 位作者 董朋轩 叶升平 黄兰萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2320-2325,共6页
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele... The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates. 展开更多
关键词 7085 aluminum alloy heat treatment stress corrosion cracking fracture toughness
下载PDF
Effects of silicon content on microstructure and stress corrosion cracking resistance of 7050 aluminum alloy 被引量:12
11
作者 佘欢 储威 +2 位作者 疏达 王俊 孙宝德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2307-2313,共7页
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t... Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution. 展开更多
关键词 7050 aluminum alloy silicon content MICROSTRUCTURE stress corrosion cracking resistance
下载PDF
Numerical Computation of Stress Intensity Factors for Bolt-hole Corner Crack in Mechanical Joints 被引量:3
12
作者 王立清 盖秉政 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期411-416,共6页
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit... The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant. 展开更多
关键词 bolt-hole comer crack contact stress intensity factor mechanical joint CLEARANCE finite element method
下载PDF
New Formulation for Arbitrary Cracks Problem and Its Stress Intensity Factor of Plane Elasticity 被引量:4
13
作者 杨晓春 范天佑 刘士强 《Journal of Beijing Institute of Technology》 EI CAS 1999年第4期364-369,共6页
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic... Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given. 展开更多
关键词 complex variable function method general curve cracks Riemann Hilbert boundary value problem closed form solution stress intensity factors
下载PDF
Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution 被引量:33
14
作者 Ping Liang Cui-wei Du +2 位作者 Xiao-gang Li Xu Chen Zhang liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期407-413,共7页
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in... Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip. 展开更多
关键词 pipeline steel stress corrosion cracking hydrogen assisted cracking slow strain rate tensile
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:12
15
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
16
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
Investigation of Stress Corrosion Cracking Initiation of 7A52 Aluminum Alloy 被引量:2
17
作者 李奇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第4期648-651,共4页
The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5% NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS. The SCC susceptibility was estimated with the loss of... The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5% NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS. The SCC susceptibility was estimated with the loss of the reduction in area. The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1×10-6 s-1. The lowest one is under the condition of 1×10-5 s-1. Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks. The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy. 展开更多
关键词 7A52 aluminum alloy stress corrosion cracking stress corrosion cracking susceptibility INTERMETALLICS
下载PDF
Effect of Temperature and Concentration of Ammonium Nitrate Solution on the Succeptibility of Mild Steel to Stress Corrosion Cracking
18
作者 F. S. Mohammed S. E. A. A. Yahya A.G. Elramady 《Journal of Electromagnetic Analysis and Applications》 2010年第2期91-97,共7页
The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease... The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration. 展开更多
关键词 stress Corrosion cracking AMMONIUM Nitrate Solution MILD Steel Constant Load Test Temperature EFFECT concentration EFFECT
下载PDF
Stress/strain distributions for weld metal solidification crack instain less steels 被引量:2
19
作者 魏艳红 刘仁培 +1 位作者 董祖珏 张海州 《China Welding》 EI CAS 2000年第1期38-43,共6页
This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminate... This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminated after the element rebirth method was adopted. Secondly, the influence of solidification shrinkage was taken into account by increasing thermal expansion coefficients of the steels at elevated temperatures. Finally, the stress/strain distributions of different conditions have been computed and analyzed. Furthermore, the driving force curves of the solidification crack of the steels have been obtained by converting strain time curves into strain temperature curves, which founds a basis for predicting welding solidification crack. 展开更多
关键词 welding solidification crack driving force of welding solidification crack stress/strain field numerical simulation
下载PDF
NUMERICAL SIMULATION OF STRESS-STRAIN DISTRIBUTIONS FOR WELD METAL SOLIDIFICATION CRACKING IN STAINLESS STEEL 被引量:2
20
作者 Y. H. Wei R. P. Liu and Z. J. Dong( 1) National Key Laboratory of Advanced Welding Production Technology, HIT, Harbin 150001, China 2) Harbin Research institute of Welding,Harbin 150080, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期133-138,共6页
This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress -... This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method. 展开更多
关键词 welding solidification crack welding solidification crack driving force finite element method stress - strain field numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部