期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of B_(4)C on strength coefficient,cold deformation and work hardening exponent characteristics of Mg composites
1
作者 S.Suresh M.Navaneetha Krishnan S.C.Vettivel 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1381-1400,共20页
The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C co... The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites. 展开更多
关键词 Powder metallurgy Cold deformation WORKABILITY Instantaneous work hardening exponent Workability stress exponent Triaxial stress
下载PDF
The creep behavior of Mg-9Al-1Si-1SiC composite at elevated temperature 被引量:3
2
作者 Pengwen Zhou Shaoxiong Zhang +6 位作者 Ming Li Hongxia Wang Weili Cheng Lifei Wang Hang Li Wei Liang Yiming Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期944-951,共8页
The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant... The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism. 展开更多
关键词 MICROSTRUCTURE stress exponent n Creep activation energy Q Mg-9Al-1Si-1SiC composite
下载PDF
Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation
3
作者 Zhaoyang Ma Chengpeng Zhang +1 位作者 Ranjith Pathegama Gamage Guanglei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期283-294,共12页
The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,thes... The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,these tests are expensive and time-consuming.Nanoindentation creep tests,as an alternative method,can be performed to investigate the mechanical and viscoelastic properties of granite samples.In this study,the reduced Young’s modulus,hardness,fracture toughness,creep strain rate,stress exponent,activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results.It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift,and then it decreased slowly.The stress exponent values obtained were in the range from 4.5 to 22.9,which indicates that dislocation climb is the creep deformation mechanism.In addition,fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties.Last but not least,both three-element Voigt model and Burgers model fit the nanoindentation creep curves well.This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a microscale perspective,which is of great significance to the understanding of localized deformation processes of rocks. 展开更多
关键词 NANOINDENTATION GRANITE Time-dependent creep stress exponent Strain rate sensitivity Fracture toughness
下载PDF
ANALYSIS ON PSEUDO-STEADY INDENTATION CREEP
4
作者 Hidenari Takagi Ming Dao Masami Fujiwara 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期283-288,共6页
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and th... Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests. 展开更多
关键词 indentation creep finite element method conical indenter geometrical self-similarity pseudo-steady state control volume stress exponent
下载PDF
Effect of tempering temperature on strain hardening exponent and flow stress curve of 1000MPa grade steel for construction machinery 被引量:5
5
作者 Yang Yun Qing-wu Cai +1 位作者 Bao-sheng Xie Shuang Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第9期950-956,共7页
To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial te... To study the effect of tempering temperature on strain hardening exponent and flow stress curve,one kind of 1000 MPa grade low carbon bainitic steel for construction machinery was designed,and the standard uniaxial tensile tests were conducted at room temperature.A new flow stress model,which could predict the flow behavior of the tested steels at different tempering temperatures more efficiently,was established.The relationship between mobile dislocation density and strain hardening exponent was discussed based on the dislocation-stress relation.Arrhenius equation and an inverse proportional function were adopted to describe the mobile dislocation,and two mathematical models were established to describe the relationship between tempering temperature and strain hardening exponent.Nonlinear regression analysis was applied to the Arrhenius type model,hence,the activation energy was determined to be 37.6kJ/mol.Moreover,the square of correlation coefficient was 0.985,which indicated a high reliability between the fitted curve and experimental data.By comparison with the Arrhenius type curve,the general trend of the inverse proportional fitting curve was coincided with the experimental data points except of some fitting errors.Thus,the Arrhenius type model can be adopted to predict the strain hardening exponent at different tempering temperatures. 展开更多
关键词 Tempering temperature Flow stress curve Strain hardening exponent Microscopic mechanism Mathematical model
原文传递
Creep Behavior of Fusion Zone and Base Metal of the Electron Beam Weldments of a Near-alpha Titanium Alloy 被引量:1
6
作者 Zhiyong Chen Jinwei Li +3 位作者 Jie Liu Qingjiang Wang Jianrong Liu Rui Fang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第6期564-571,共8页
The high temperature creep behavior of fusion zone (FZ) and of a near-alpha titanium alloy Ti-60 has been investigated. base metal (BM) of the electron beam weldments While the BM shows a fully transformed, coarse... The high temperature creep behavior of fusion zone (FZ) and of a near-alpha titanium alloy Ti-60 has been investigated. base metal (BM) of the electron beam weldments While the BM shows a fully transformed, coarse primary β grains with large colonies consisting of aligned α lamellar, the FZ exhibits thin martensitic α′ platelets in the columnar β grains. The creep results show that the steady state creep rates of FZ follow the power-law creep, with the stress exponents obtained in the range from 5.6 (550℃) to 5.9 (600℃), and corrected activation energies of 309-352 kJ/mol; the stress exponents of BM exhibit different values when the creep testing stress and temperature alternate. The values of 2.4-3.2 are obtained when the stresses are under 220 MPa or the temperature is 550℃, also an exponent of 6.6 is achieved at stresses above 220 MPa at 600℃. The corrected activation energies of BM corresponding to the stress exponents are 123-161 kJ/mol (n=2.4-3.2) and 344 kJ/mol (n=6.6). The creep mechanisms of FZ and BM have been discussed in light of the creep microstructures, activation energies and the stress exponents. The creep mechanisms of FZ is the diffusion controlled dislocation climb, the creep of BM is controlled by 'solute drag' creep and dislocation climb when the stress and temperature are different. Transmission electron microscopy (TEM) observations of the dislocation structures of crept specimens are presented to give some supports for the creep behavior of FZ and BM. In addition to the creep mechanism of dislocation movement, the interface sliding has been found to play an important role during creep of FZ. 展开更多
关键词 Steady state creep stress exponent Activation energy Electron beam welding Near-alpha titanium alloy
原文传递
Correct Interpretation of Creep Rates: A Case Study of Cu
7
作者 W.Blum J.Dvoák +2 位作者 P.Král P.Eisenlohr V.Sklenika 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1065-1068,共4页
Traditionally the deformation resistance in creep is characterized by the minimum creep rate εmin and its sensitivity to stress (stress exponent n) and temperature (activation energy Q). Various values of constan... Traditionally the deformation resistance in creep is characterized by the minimum creep rate εmin and its sensitivity to stress (stress exponent n) and temperature (activation energy Q). Various values of constant n have been reported in the literature and interpreted in terms of specific mechanisms. The present case study of coarse-grained Cu at 573 K yields a stress exponent n = 9 for εmin. in tension and a relatively low activation energy. The evolution of the deformation resistance with strain at constant tensile creep load and comparison with creep in compression without fracture indicates that the tensile εmin. result from transition from uniform deformation to strain localization during fracture. This is confirmed by the results of creep in compression where fracture is suppressed. Both the tensile εmin, and the compressive creep rate at strains around 0.3 can be described using existing equations for quasi-stationary deformation containing the subgrain boundary misorientation θ as structure parameter. While in the latter case constant θ leads to monotonic increase of n with stress, the tensile nine-power-law results from variable θ, and has no simple meaning. The result of this case study means that uncritical interpretation of minimum tensile creep rates as stationary ones bears a high risk of systematic errors in the determination of creep parameters and identification of creep mechanisms. 展开更多
关键词 Cu Creep Minimum creep rate Activation energy stress exponent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部