This study investigates the relation between the Coulomb failure stress of the mainshock with the aftershocks sequence following the 2018 Palu-Donggala earthquake in Indonesia.We calculate the Coulomb failure stress u...This study investigates the relation between the Coulomb failure stress of the mainshock with the aftershocks sequence following the 2018 Palu-Donggala earthquake in Indonesia.We calculate the Coulomb failure stress using the available coseismic fault models,which had varied moment magnitudes between M_W7.53~M_W7.62.Different interpretations of the fault sources were suggested by previous studies.While two fault models suggested that one inland fault segment ruptured during the earthquake,another fault model proposed that two fault segments ruptured inland of Central Sulawesi and along the coast of Palu bay.We further overlay the positive and negative values of Coulomb failure stress with the reported relocated aftershock.We find that only by conducting Coulomb failure stress analysis,we can not favour the preference of the coseismic fault which explains aftershock distribution.This investigation demonstrates that additional observational data from geological field surveys are required to identify the surface rupture in comparison with the coseismic fault model.展开更多
In this research work,we present the evolution of Coulomb failure stress(CFS)in the Sulaiman Lobe and its implications for seismic hazard assessment.The Chaman transform fault,~1,000 km long,is the major active fault ...In this research work,we present the evolution of Coulomb failure stress(CFS)in the Sulaiman Lobe and its implications for seismic hazard assessment.The Chaman transform fault,~1,000 km long,is the major active fault that marks the western boundary between Pakistan and Afghanistan on the Indian Plate.To date,few studies have been conducted to unveil the interactions among earthquakes and the implications of these interactions for seismic hazard assessment in the region.We thoroughly investigated the published and online catalog to construct a sequence of major earthquakes that occurred in this region during the past.The final earthquake sequence was composed of 15 earthquakes of M_(w)≥6.0,beginning with the 1888 earthquake.We used the stress-triggering theory to numerically simulate the evolution of CFS caused by these earthquakes.The numerical results revealed that 8 out of 15earthquakes were triggered by the preceding earthquakes.The earthquakes in 1908,1910,1935,1966,and 1997 were rather independent earthquakes in this sequence.Although the epicenters of the 1975a and 1975b earthquakes were in the stress shadow zone,the partial rupture segments of both these earthquakes were in high-CFS regions.The CFS induced by the 1935 earthquake was notable,as it later triggered the 2008 doublet.Moreover,our results revealed that the northern segment of the Chaman Fault,the southern segment of the Ghazaband Fault,and the northwestern segment of the Urghargai Fault demonstrated a high change in CFS that could trigger seismicity in these regions.The necessary arrangements must therefore be made to mitigate any possible seismic hazards in the region.展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru...Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).展开更多
The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Co...The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Coulomb failure stress reveal that 4 of 5 large aftershocks occurred in areas with Dsf >0 (10-2~10-1 MPa) and one aftershock occurred in an area with Dsf =-0.56 MPa. It is concluded that the permanent fault displacement due to the main shock is the main cause of activity of large aftershocks, but not the whole cause.展开更多
In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster&...In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.展开更多
The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt w...The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt was affected by stress interaction among different active faults, we calculate the Coulomb failure stress change(ΔCFS) induced by the Fuyun earthquake due to coseismic deformation of the elastic crust and postseismic viscoelastic relaxation of the lower crust and upper mantle. Numerical results show that the total ΔCFS at a 10-km depth produced by the Fuyun earthquake attains approximately 0.015-0.134 bar near the epicenter, and just before the occurrence of the 2003 M_(w)7.2 Chuya earthquake, which distances about 400 km away from the Fuyun earthquake. Among the increased ΔCFS,viscoelastic relaxation from 1931 to 2003 contributes to approximately 0.014-0.131 bar, accounting for>90% of the total ΔCFS. More importantly, we find that for the recorded seismicity in the region with a radius of about 270 km to the Fuyun earthquake from 1970 to 2018, the percentage of earthquakes that fall in positive lobes of ΔCFS resolved on the NNW-SSE Fuyun strike-slip fault, on the NWW-SEE Irtysh strike-slip fault, and on the NW-SE Kurti reverse fault is up to 67.22%-91.36%. Therefore, the predictedΔCFS suggests that the impact of the 1931 M_(w)7.8 Fuyun earthquake on seismic activity around the Altai mountains is still significant as to hasten occurrence of the 2003 M_(w)7.2 Chuya earthquake at a relatively far distance and to trigger its aftershocks in the near-field even after several decades of the mainshock.展开更多
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T...In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.展开更多
Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to disc...Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to discuss the relationship between different subevents, we investigated the rupture process of the 1966 Xingtai, the 1976 Tangshan, the 1990 Gonghe and the 1996 Lijiang earthquake by calculating the static Coulomb failure stress changes produced by the first subevent. The calculation of static stress changes produced by fault slip is based on the formulation of Okada (1992). The result suggests that the static Coulomb failure stress changes (ΔCFS) produced by the first subevent have 'triggering' effect on the subsequent subevents which locate in the region where the Coulomb stress change produced by the first event is positive, with the order of magnitude 10-2 [similar to] 10-1 MPa.展开更多
We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increas...We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increasing were observed, which was significant in 0.99 significance level using Z-statistic test and was proposed to be triggered by the M_s=7.8 Tangshan earthquake. The magnitude of the greatest triggered event was 5.5. The epicenter distances of these earthquakes were several ten kilometers to 300 km. The static stress change △CFS of Coulomb failure was calculated using an elastic dislocation model in half space and the △CFS on the major rupture directions in these three regions were positive.展开更多
The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the We...The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.展开更多
The distribution of Coulomb failure stress (CFS) change in the steep excavation slope is calculated by finite element method in this paper, and the failure mechanics under different conditions have been investigated...The distribution of Coulomb failure stress (CFS) change in the steep excavation slope is calculated by finite element method in this paper, and the failure mechanics under different conditions have been investigated. Comparing the CFSs before and after the slope excavation (stress loading and unloading processes), the dangerous internal zone and the most likely failure external area are attained. Given the shear cracks on the top surface while tensile stress or cracks along the toe of the slope, we analyze the high cutting-angle steep slope in Kaixian county of the Three Gorges Reservoir region. We bring forward that the peak value of CFS after excavation can reach to the order of 0.1 MPa, which is greatly higher than that of before. Our preliminary results are useful for optimizing the reinforcement structure during the steep slope stabilization engineering.展开更多
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre...Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.展开更多
Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake ...Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake nucleation on a neighboring fault, depending on the relative geometry of the two faults and the earthquake rupture mechanisms. In this paper, we simulate the evolutionary process of cumulative Coulomb failure stress change ( CCFSC ) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumentally measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault orientational parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulting from secular tectonic loading and coseismic and postseismic deformation. On the eve of each large earthquake, the accumulated stress field is projected to the fault surface of that earthquake and the CCFSC is evaluated to assess the triggering effect of CCFSC. Forty-nine earthquakes with M≥6.5 have occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive CCFSC, yielding a triggering rate of 81.3%. If we use the accumulative stress field to evaluate the CCFSC for the M ≥ 5.0 earthquakes that occurred in North China since 1303, we find that 75.5% of those events were triggered. The triggering rate for the M ≥ 5.0 earthquakes after the 1976 Ninghe earthquake is up to 82.1%. The triggering rates can be higher if corrections are made for some aftershocks which were wrongly identified as occurring in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows a very high correlation between positive CCFSC and earthquake occurrences. Relatively high CCFSC in North China at present is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, the western end of the Zhangjiakou-Bohai Sea seismic zone, and the shiyuan basin, Shanxi graben, suggesting relatively higher earthquake potential in these areas.展开更多
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ...This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within...The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within one week of the mainshock and induced considerable stress changes,few studies have been conducted to comprensively investigate the characteristics.The current study examines the horizontal and vertical displacements as well as the stress and gravity changes,aftershock distributions and also find out whether these changes affect the surrounding regions along the complex fault systems.The study covers the entire area affected by the Kaikoura event,which includes the northern part of the South Island and the southern part of the North Island.The dislocation theory was employed to evaluate the coseismic slip model on the multiple faults.The displacement results revealed that the maximum horizontal displacement is about 6 m and the vertical about 2 m,which are reasonably consistent with earlier study findings.Besides,the stress and gravity changes are quite complicated and inhomogeneous as evidenced by our coseismic model,demonstrating the complexity of the Kaikoura earthquake as well.Almost all the aftershocks are distributed in places where the stress and gravity change are found to be significant.In order to investigate the stability of our stress change models,we applied different friction coefficients and receiver fault parameters.The results justify the friction coefficient(μ=0.4)and the receiver fault parameters(230°,70°,150°)are suitable to define good stress change estimates.According to the stress change results at 15 km depth,the northern parts of the mainshock region,Hundalee fault,Humps fault and Jordan thrust areas together with the Wellington area are closer to failure and situated in a seismic risk zone.The multidimensional analysis adopted in this paper is helpful for making decisions and applications of stress and gravity change models in assessing seismic hazards.展开更多
In the application of distortion energy theory to multiaxial fatigue prediction problems,it isquite frequent to meet with a confusion in the evaluation of the extremum values of equivalentstresses.In this paper,a desc...In the application of distortion energy theory to multiaxial fatigue prediction problems,it isquite frequent to meet with a confusion in the evaluation of the extremum values of equivalentstresses.In this paper,a description about this error is presented and discussed thereafter.Neces-sary correction has been made towards this problem.展开更多
This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of visc...This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.展开更多
The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi str...The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi MS6.8 earthquake? The Atushi earthquake of MS6.7 occurred in 1996,and the 1997~1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later.Did the Atushi earthquake of M-S6.7 encourage the 1997~1998 Jiashi strong earthquake swarm? There were 9 earthquakes with M-S6.0 from 1996 to 1997 in the Jiashi seismic region,how did they act on each other? To answer the above questions,the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of M-S6.7,the 1997~1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of M-S6.8,and analyzes the seismicity characteristics around the Jiashi region.The results show that the 1996 Atushi earthquake of M-S6.7 encouraged the 1997~1998 Jiashi strong swarm to some extent,the accumulative Coulomb stress change from the previous M-6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M-6.0 events,and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with M-S6.8.展开更多
By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "af...By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "aftershocks of the Wenchuan earthquake related to coseismic static Coulomb stress changes in its aftershock zone and the areas nearby.It shows that the frequency is significantly lower than the truth in the main rupture zone,especially in the southern rupture zone,due to the decrease of stress level on the rupture plane of the main shock resulting from coseismic Coulomb stress change.The study also shows that the effect of the Coulomb stress change on the duration of aftershock activity is associated with the lower limit magnitude.The duration is about 15-16 months for aftershocks above ML4.0,and close to 60 months for aftershocks above ML3.5.In this period,the ratio of the"direct"aftershocks caused by coseismic Coulomb stress change ranges between 44.7% to48.6%,which suggests that,even in the "effective"period of coseismic Coulomb stress changes,about half of the aftershocks on the main shock rupture plane are independent of coseismic Coulomb stress changes.It is pointed out that those aftershocks may be related to the afterslip or the viscoelastic relaxation,which are time dependent cases.展开更多
基金supported by the 2019 World Class University Research Fund of Bandung Institute of Technology for International Research No.LPPM.PN-10-30-2019the 2018 Overseas Research Grants of the Asahi Glass Foundation No.FTTM.PN-5-01-2019
文摘This study investigates the relation between the Coulomb failure stress of the mainshock with the aftershocks sequence following the 2018 Palu-Donggala earthquake in Indonesia.We calculate the Coulomb failure stress using the available coseismic fault models,which had varied moment magnitudes between M_W7.53~M_W7.62.Different interpretations of the fault sources were suggested by previous studies.While two fault models suggested that one inland fault segment ruptured during the earthquake,another fault model proposed that two fault segments ruptured inland of Central Sulawesi and along the coast of Palu bay.We further overlay the positive and negative values of Coulomb failure stress with the reported relocated aftershock.We find that only by conducting Coulomb failure stress analysis,we can not favour the preference of the coseismic fault which explains aftershock distribution.This investigation demonstrates that additional observational data from geological field surveys are required to identify the surface rupture in comparison with the coseismic fault model.
文摘In this research work,we present the evolution of Coulomb failure stress(CFS)in the Sulaiman Lobe and its implications for seismic hazard assessment.The Chaman transform fault,~1,000 km long,is the major active fault that marks the western boundary between Pakistan and Afghanistan on the Indian Plate.To date,few studies have been conducted to unveil the interactions among earthquakes and the implications of these interactions for seismic hazard assessment in the region.We thoroughly investigated the published and online catalog to construct a sequence of major earthquakes that occurred in this region during the past.The final earthquake sequence was composed of 15 earthquakes of M_(w)≥6.0,beginning with the 1888 earthquake.We used the stress-triggering theory to numerically simulate the evolution of CFS caused by these earthquakes.The numerical results revealed that 8 out of 15earthquakes were triggered by the preceding earthquakes.The earthquakes in 1908,1910,1935,1966,and 1997 were rather independent earthquakes in this sequence.Although the epicenters of the 1975a and 1975b earthquakes were in the stress shadow zone,the partial rupture segments of both these earthquakes were in high-CFS regions.The CFS induced by the 1935 earthquake was notable,as it later triggered the 2008 doublet.Moreover,our results revealed that the northern segment of the Chaman Fault,the southern segment of the Ghazaband Fault,and the northwestern segment of the Urghargai Fault demonstrated a high change in CFS that could trigger seismicity in these regions.The necessary arrangements must therefore be made to mitigate any possible seismic hazards in the region.
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
基金Project(51021004)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).
基金The State Sciences and Technology Key Project During the Tenth Five-year Plan (2001BA601B02-02-04) China-Greece International Cooperative Research Project on Seismology and Chinese Joint Seismological Science Foundation (103073).
文摘The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Coulomb failure stress reveal that 4 of 5 large aftershocks occurred in areas with Dsf >0 (10-2~10-1 MPa) and one aftershock occurred in an area with Dsf =-0.56 MPa. It is concluded that the permanent fault displacement due to the main shock is the main cause of activity of large aftershocks, but not the whole cause.
基金supported by the Earthquake Science and Technology Development Fund of Lanzhou Institute of Seismology,CEA(2012M01)National Natural Science Foundation(41174059)China Earthquake Administration as a Work Assignment for Seismic Situation Tracing(2012020101)
文摘In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.
基金supported by the Natural Science Foundation of China(No.42120104004)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0708)。
文摘The 1931 M_(w)7.8 Fuyun earthquake occurred around the Altai mountains, an intracontinental deformation belt with limited active strain-rate accumulation. To explore whether seismic activity in this deformation belt was affected by stress interaction among different active faults, we calculate the Coulomb failure stress change(ΔCFS) induced by the Fuyun earthquake due to coseismic deformation of the elastic crust and postseismic viscoelastic relaxation of the lower crust and upper mantle. Numerical results show that the total ΔCFS at a 10-km depth produced by the Fuyun earthquake attains approximately 0.015-0.134 bar near the epicenter, and just before the occurrence of the 2003 M_(w)7.2 Chuya earthquake, which distances about 400 km away from the Fuyun earthquake. Among the increased ΔCFS,viscoelastic relaxation from 1931 to 2003 contributes to approximately 0.014-0.131 bar, accounting for>90% of the total ΔCFS. More importantly, we find that for the recorded seismicity in the region with a radius of about 270 km to the Fuyun earthquake from 1970 to 2018, the percentage of earthquakes that fall in positive lobes of ΔCFS resolved on the NNW-SSE Fuyun strike-slip fault, on the NWW-SEE Irtysh strike-slip fault, and on the NW-SE Kurti reverse fault is up to 67.22%-91.36%. Therefore, the predictedΔCFS suggests that the impact of the 1931 M_(w)7.8 Fuyun earthquake on seismic activity around the Altai mountains is still significant as to hasten occurrence of the 2003 M_(w)7.2 Chuya earthquake at a relatively far distance and to trigger its aftershocks in the near-field even after several decades of the mainshock.
基金financially supported by the National Key Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.51474136 and 51474013)+1 种基金the Opening Project Fund of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (No.MDPC2013KF06)the Research Award Fund for the Excellent Youth of Shandong University of Science and Technology (No.2011KYJQ106)
文摘In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.
基金State Natural Science Foundation of China (49725410) and the Project "973
文摘Most strong earthquakes have complex rupture processes. As an approximation, each earthquake can be described as two or more subevents of rupture with time interval of several seconds to several days. In order to discuss the relationship between different subevents, we investigated the rupture process of the 1966 Xingtai, the 1976 Tangshan, the 1990 Gonghe and the 1996 Lijiang earthquake by calculating the static Coulomb failure stress changes produced by the first subevent. The calculation of static stress changes produced by fault slip is based on the formulation of Okada (1992). The result suggests that the static Coulomb failure stress changes (ΔCFS) produced by the first subevent have 'triggering' effect on the subsequent subevents which locate in the region where the Coulomb stress change produced by the first event is positive, with the order of magnitude 10-2 [similar to] 10-1 MPa.
文摘We studied the seismicity before and after the M_s=7.8 Tangshan event on July 28, 1976 (39°28'N, 1 18° 11'E) and the results show that in 3 regions outside of the source zone, seismicity rate increasing were observed, which was significant in 0.99 significance level using Z-statistic test and was proposed to be triggered by the M_s=7.8 Tangshan earthquake. The magnitude of the greatest triggered event was 5.5. The epicenter distances of these earthquakes were several ten kilometers to 300 km. The static stress change △CFS of Coulomb failure was calculated using an elastic dislocation model in half space and the △CFS on the major rupture directions in these three regions were positive.
基金supported by the Director Foundation of Institute of SeismologyChina Earthquake Administration(201056088)
文摘The Wenchuan Ms8.0 earthquake and the Lushan M7.0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8.0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan MT. 0 earth- quake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 - 0. 152 bar in the source of the Lushan M7.0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7.0 earthquake was most likely triggered by the coulomb failure stress change.
基金supported by Sinoprob-Deep Exploration Program in China sponsored by Ministry of Land and Resources of the People’s Republic of China (No.0819011A90)National Natural Science Foundation of China (No.D0408/4097409)
文摘The distribution of Coulomb failure stress (CFS) change in the steep excavation slope is calculated by finite element method in this paper, and the failure mechanics under different conditions have been investigated. Comparing the CFSs before and after the slope excavation (stress loading and unloading processes), the dangerous internal zone and the most likely failure external area are attained. Given the shear cracks on the top surface while tensile stress or cracks along the toe of the slope, we analyze the high cutting-angle steep slope in Kaixian county of the Three Gorges Reservoir region. We bring forward that the peak value of CFS after excavation can reach to the order of 0.1 MPa, which is greatly higher than that of before. Our preliminary results are useful for optimizing the reinforcement structure during the steep slope stabilization engineering.
文摘Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.
基金This project was sponsored by the National ScienceFoundation (40374012) .
文摘Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies have shown that the rupture of one fault could encourage or discourage earthquake nucleation on a neighboring fault, depending on the relative geometry of the two faults and the earthquake rupture mechanisms. In this paper, we simulate the evolutionary process of cumulative Coulomb failure stress change ( CCFSC ) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumentally measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault orientational parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulting from secular tectonic loading and coseismic and postseismic deformation. On the eve of each large earthquake, the accumulated stress field is projected to the fault surface of that earthquake and the CCFSC is evaluated to assess the triggering effect of CCFSC. Forty-nine earthquakes with M≥6.5 have occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive CCFSC, yielding a triggering rate of 81.3%. If we use the accumulative stress field to evaluate the CCFSC for the M ≥ 5.0 earthquakes that occurred in North China since 1303, we find that 75.5% of those events were triggered. The triggering rate for the M ≥ 5.0 earthquakes after the 1976 Ninghe earthquake is up to 82.1%. The triggering rates can be higher if corrections are made for some aftershocks which were wrongly identified as occurring in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows a very high correlation between positive CCFSC and earthquake occurrences. Relatively high CCFSC in North China at present is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, the western end of the Zhangjiakou-Bohai Sea seismic zone, and the shiyuan basin, Shanxi graben, suggesting relatively higher earthquake potential in these areas.
文摘This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金financially supported by the National Key Research Program of China“Collaborative Precision Positioning Project”(No.2016YFB0501900)the National Natural Science Foundation of China(No.41374032)。
文摘The Kaikoura earthquake on November 14,2016 is one of the largest and most complex earthquakes in New Zealand since 1947.Despite the fact that it has ruptured about 12 separate faults,triggered 2132 aftershocks within one week of the mainshock and induced considerable stress changes,few studies have been conducted to comprensively investigate the characteristics.The current study examines the horizontal and vertical displacements as well as the stress and gravity changes,aftershock distributions and also find out whether these changes affect the surrounding regions along the complex fault systems.The study covers the entire area affected by the Kaikoura event,which includes the northern part of the South Island and the southern part of the North Island.The dislocation theory was employed to evaluate the coseismic slip model on the multiple faults.The displacement results revealed that the maximum horizontal displacement is about 6 m and the vertical about 2 m,which are reasonably consistent with earlier study findings.Besides,the stress and gravity changes are quite complicated and inhomogeneous as evidenced by our coseismic model,demonstrating the complexity of the Kaikoura earthquake as well.Almost all the aftershocks are distributed in places where the stress and gravity change are found to be significant.In order to investigate the stability of our stress change models,we applied different friction coefficients and receiver fault parameters.The results justify the friction coefficient(μ=0.4)and the receiver fault parameters(230°,70°,150°)are suitable to define good stress change estimates.According to the stress change results at 15 km depth,the northern parts of the mainshock region,Hundalee fault,Humps fault and Jordan thrust areas together with the Wellington area are closer to failure and situated in a seismic risk zone.The multidimensional analysis adopted in this paper is helpful for making decisions and applications of stress and gravity change models in assessing seismic hazards.
文摘In the application of distortion energy theory to multiaxial fatigue prediction problems,it isquite frequent to meet with a confusion in the evaluation of the extremum values of equivalentstresses.In this paper,a description about this error is presented and discussed thereafter.Neces-sary correction has been made towards this problem.
基金Chinese Joint Seismological Science Foundation (602005).
文摘This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.
基金The research was jointly supported by Science and Technology R&D Program of Xinjiang (200333116)the National 10th"Five-Year Plan"Science and Technology R & D Program,China (2004BA601B01-04-01)
文摘The Bachu-Jiashi earthquake of MS6.8 occurred on February 24,2003,about 20km from the southeast of the 1997~1998 Jiashi seismic region in Xinjiang,and its aftershocks are rich and strong.Did the 1997~1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi MS6.8 earthquake? The Atushi earthquake of MS6.7 occurred in 1996,and the 1997~1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later.Did the Atushi earthquake of M-S6.7 encourage the 1997~1998 Jiashi strong earthquake swarm? There were 9 earthquakes with M-S6.0 from 1996 to 1997 in the Jiashi seismic region,how did they act on each other? To answer the above questions,the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of M-S6.7,the 1997~1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of M-S6.8,and analyzes the seismicity characteristics around the Jiashi region.The results show that the 1996 Atushi earthquake of M-S6.7 encouraged the 1997~1998 Jiashi strong swarm to some extent,the accumulative Coulomb stress change from the previous M-6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M-6.0 events,and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with M-S6.8.
基金funded by the special project of the National Science&Technology Pillar Program during the Twelfth "Five-year Plan" Period(2012BAK19B02-05-02)
文摘By the aftershock frequency estimation method based on the calculation of coseismic static Coulomb stress changes and rate-and state-dependent fault constitutive law,we calculate the frequency of "direct "aftershocks of the Wenchuan earthquake related to coseismic static Coulomb stress changes in its aftershock zone and the areas nearby.It shows that the frequency is significantly lower than the truth in the main rupture zone,especially in the southern rupture zone,due to the decrease of stress level on the rupture plane of the main shock resulting from coseismic Coulomb stress change.The study also shows that the effect of the Coulomb stress change on the duration of aftershock activity is associated with the lower limit magnitude.The duration is about 15-16 months for aftershocks above ML4.0,and close to 60 months for aftershocks above ML3.5.In this period,the ratio of the"direct"aftershocks caused by coseismic Coulomb stress change ranges between 44.7% to48.6%,which suggests that,even in the "effective"period of coseismic Coulomb stress changes,about half of the aftershocks on the main shock rupture plane are independent of coseismic Coulomb stress changes.It is pointed out that those aftershocks may be related to the afterslip or the viscoelastic relaxation,which are time dependent cases.