Triboluminescence,also as known as mechanoluminescence,is an attractive optical behavior that means the light emitted from specific organic and inorganic materials when they are subjected to external forces,such as cr...Triboluminescence,also as known as mechanoluminescence,is an attractive optical behavior that means the light emitted from specific organic and inorganic materials when they are subjected to external forces,such as crushing,deformation,cleaving,vibration.Inorganic triboluminescent materials show great potential for applications in sensing,such as stress sensing,damage detection.However,the triboluminescent mechanism of organic materials should be pushed further as well as their application.In this review,we summarized the history of development and possible mechanism of organic triboluminescent materials,and discussed various applications in sensing field.At the same time,inspired by the existing research progress in inorganic triboluminescent materials,we proposed the flourishing development prospects of organic triboluminescent materials in stress sensors,movement monitoring,imaging stress distribution,visualization of crack propagation,structural diagnosis,and other fields.展开更多
This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optica...This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optical technique.The proposed approach,which can be called digital image correlation(DIC)-aided slitting technique,introduces a successive extension slot to a specimen and employs the DIC technique to measure the released displacement profiles of the cutting sections after each cutting increment.Then the displacement profiles are used to directly calculate the residual stress distributions up to the slot tip and hence,a stress distribution can be obtained after a cutting increment.Finally,all of the stress distributions are averaged to ultimately determine the original residual stress field.This method does not include any complex experimental operations or tedious derivation,and the resolution of stress variation is greatly improved by the continuous measurement of the released displacements.The presented method has been preliminarily verified by a specimen with residual stress introduced by a four-point bending test.The results show that residual stresses determined by the DIC-aided slitting technique agree well with those from finite element(FE) prediction.The residual stress in a friction stir welded aluminum specimen obtained by the presented technique is also consistent with the evaluations given by X-ray diffraction.Furthermore,the residual stresses obtained by the DIC-aided slitting technique demonstrate higher accuracy and stability than the evaluations derived by the DIC-aided contour method.展开更多
The elastodynamic dislocation behaviors are of great interest for understanding the performances of structural alloys under intense dynamic loading conditions.The formation,propagations,and interactions of dislocation...The elastodynamic dislocation behaviors are of great interest for understanding the performances of structural alloys under intense dynamic loading conditions.The formation,propagations,and interactions of dislocations(such as injected dislocation,accelerating dislocation,steady moving dislocation at high constant speed)are quite different from static dislocations.For steady-moving dislocation within the isotropic infinite medium,the effects of surface and interface on steady-moving dislocations within limited space are still known.In this paper,we investigate the elastodynamic image stress simulation of steady moving dislocation within film of limited thickness at constant speed using Eigenstrain theory,Lorentz transformation,and steady dynamic equilibrium equations.We propose an efficient solution method that involves complex Fourier series,transforming partial differential equations into ordinary differential equations,and ultimately into a set of algebraic equations in spectral space.The effects of dislocation speed and position near the free surface on the image stress of steady-moving climbing and gliding dislocations within the thin film are examined.The results show that relativistic effects are significant for certain dislocation configurations and stress components,whereas other stress components are less sensitive to relativistic effects near the transonic speed region.展开更多
The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with...The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with an external contact reference. The unique design of the common-path OCT is utilized to set up an imaging system in which a chicken eye is placed adjacent to a glass plate serving as the external reference plane for the imaging system. As the force is applied to the chicken eye, it presses against the reference glass plate. The modified OCT image obtained is used to calculate the size of contact area, which is then used to derive the tensile stress on the cornea. The drop in signal levels upon contact of reference glass plate with the tissue are extremely sharp because of the sharp decline in reference power levels itself, thus providing us with an accurate measurement of contact area. The experimental results were in good agreement with the numerical predictions. The results of this study might be useful in providing new insights and ideas to improve the precision and safety of currently used ophthalmic surgical techniques. This research outlines a method which could be used to provide high resolution OCT images and a precise feedback of the forces applied to the cornea simultaneously.展开更多
基金Project(51703253)supported by the National Natural Science Foundation of ChinaProject(2020GXLH-Z-010)supported by Key Research and Development Program of Shaanxi Province,China+6 种基金Project(2020JQ-168)supported by Shaanxi Science and Technology Fund,ChinaProject(201906010091)supported by Pearl River Nova Program of Guangzhou,ChinaProject(cstc2020jcyj-msxm X0931)supported by Chongqing Science and Technology Fund,ChinaProject(2021A1515010633)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(202003N4060)supported by the Ningbo Natural Science Foundation,ChinaProject(SZKFJJ202001)supported by Henan Key Laboratory of Special Protective Materials,ChinaProject(2020Z073053007)supported by Aerospace Science Foundation of China。
文摘Triboluminescence,also as known as mechanoluminescence,is an attractive optical behavior that means the light emitted from specific organic and inorganic materials when they are subjected to external forces,such as crushing,deformation,cleaving,vibration.Inorganic triboluminescent materials show great potential for applications in sensing,such as stress sensing,damage detection.However,the triboluminescent mechanism of organic materials should be pushed further as well as their application.In this review,we summarized the history of development and possible mechanism of organic triboluminescent materials,and discussed various applications in sensing field.At the same time,inspired by the existing research progress in inorganic triboluminescent materials,we proposed the flourishing development prospects of organic triboluminescent materials in stress sensors,movement monitoring,imaging stress distribution,visualization of crack propagation,structural diagnosis,and other fields.
基金supported by the National Natural Science Foundation of China(No.11272029)
文摘This paper presents an incremental cutting method for evaluating the longitudinal residual stresses in a butt welded thin plate via combining the traditional residual stress measurement methods and the advanced optical technique.The proposed approach,which can be called digital image correlation(DIC)-aided slitting technique,introduces a successive extension slot to a specimen and employs the DIC technique to measure the released displacement profiles of the cutting sections after each cutting increment.Then the displacement profiles are used to directly calculate the residual stress distributions up to the slot tip and hence,a stress distribution can be obtained after a cutting increment.Finally,all of the stress distributions are averaged to ultimately determine the original residual stress field.This method does not include any complex experimental operations or tedious derivation,and the resolution of stress variation is greatly improved by the continuous measurement of the released displacements.The presented method has been preliminarily verified by a specimen with residual stress introduced by a four-point bending test.The results show that residual stresses determined by the DIC-aided slitting technique agree well with those from finite element(FE) prediction.The residual stress in a friction stir welded aluminum specimen obtained by the presented technique is also consistent with the evaluations given by X-ray diffraction.Furthermore,the residual stresses obtained by the DIC-aided slitting technique demonstrate higher accuracy and stability than the evaluations derived by the DIC-aided contour method.
基金supported by the National Natural Science Foundation of China(Grant Nos.68917557 and 11972081)。
文摘The elastodynamic dislocation behaviors are of great interest for understanding the performances of structural alloys under intense dynamic loading conditions.The formation,propagations,and interactions of dislocations(such as injected dislocation,accelerating dislocation,steady moving dislocation at high constant speed)are quite different from static dislocations.For steady-moving dislocation within the isotropic infinite medium,the effects of surface and interface on steady-moving dislocations within limited space are still known.In this paper,we investigate the elastodynamic image stress simulation of steady moving dislocation within film of limited thickness at constant speed using Eigenstrain theory,Lorentz transformation,and steady dynamic equilibrium equations.We propose an efficient solution method that involves complex Fourier series,transforming partial differential equations into ordinary differential equations,and ultimately into a set of algebraic equations in spectral space.The effects of dislocation speed and position near the free surface on the image stress of steady-moving climbing and gliding dislocations within the thin film are examined.The results show that relativistic effects are significant for certain dislocation configurations and stress components,whereas other stress components are less sensitive to relativistic effects near the transonic speed region.
文摘The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with an external contact reference. The unique design of the common-path OCT is utilized to set up an imaging system in which a chicken eye is placed adjacent to a glass plate serving as the external reference plane for the imaging system. As the force is applied to the chicken eye, it presses against the reference glass plate. The modified OCT image obtained is used to calculate the size of contact area, which is then used to derive the tensile stress on the cornea. The drop in signal levels upon contact of reference glass plate with the tissue are extremely sharp because of the sharp decline in reference power levels itself, thus providing us with an accurate measurement of contact area. The experimental results were in good agreement with the numerical predictions. The results of this study might be useful in providing new insights and ideas to improve the precision and safety of currently used ophthalmic surgical techniques. This research outlines a method which could be used to provide high resolution OCT images and a precise feedback of the forces applied to the cornea simultaneously.