期刊文献+
共找到3,714篇文章
< 1 2 186 >
每页显示 20 50 100
Enhancing Stress Intensity Factor Reduction in Cracks Originating from a Circular Hole in a Rectangular Plate under Uniaxial Stress through Piezoelectric Actuation
1
作者 Gopi Krishna Konda Jens Schuster Yousuf Pasha Shaik 《Materials Sciences and Applications》 2024年第1期1-14,共14页
Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelect... Circular holes are commonly employed in engineering designs;however, they often serve as locations where cracks initiate and propagate. This paper explores a novel approach to structural repair by utilizing piezoelectric actuators. The primary focus of this study is to investigate the influence of an adhesively bonded piezoelectric actuator patch placed above a circular hole on the stress intensity factor (SIF) in an aluminium plate. The plate is subjected to uniaxial tensile stress, while the piezoelectric actuator is excited with varying voltage levels. The analysis is conducted using the finite element method (FEM), a powerful numerical technique for simulating complex structures. The study assesses the stress distribution and employs the SIF as an adequate criterion for evaluating the impact of different patch configurations. The results indicate a strong correlation between the applied voltage and the SIF. Whether the SIF increases or decreases depends on the polarization of the piezoelectric actuator. Particularly noteworthy is the finding that rectangular patches in a horizontal orientation significantly reduce the SIF compared to other patch geometries. Moreover, double-sided patches exhibit a pronounced decrease in the SIF compared to single-sided patches. In summary, this research underscores the potential of piezoelectric actuators in mitigating stress intensity in structures with circular hole with crack initiation. It offers valuable insights into the influence of applied voltage, patch geometry, and patch placement on the SIF, thereby contributing to developing effective strategies for enhancing structural integrity. 展开更多
关键词 Piezoelectric Actuators stress intensity Factor (sif) Aluminium Plate VOLTAGE Finite Element Method (FEM)
下载PDF
Numerical Computation of Stress Intensity Factors for Bolt-hole Corner Crack in Mechanical Joints 被引量:3
2
作者 王立清 盖秉政 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期411-416,共6页
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit... The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant. 展开更多
关键词 bolt-hole comer crack contact stress intensity factor mechanical joint CLEARANCE finite element method
下载PDF
METHOD TO CALCULATE BENDING CENTER AND STRESS INTENSITY FACTORS OF CRACKED CYLINDER UNDER SAINT_VENANT BENDING
3
作者 汤任基 汤昕燕 《应用数学和力学》 EI CSCD 北大核心 2001年第1期71-78,共8页
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation... Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given. 展开更多
关键词 裂纹柱 SAint-VenAnt弯曲 弯曲中心 应力强度因
下载PDF
DETERMINATION OF THE DYNAMIC STRESS INTENSITY FACTORS,K_Ⅰ~d AND K_Ⅱ~d,FOR A MIXED-MODE PROPAGATING CRACK 被引量:4
4
作者 Liu Cheng (Department of Mechanics,Peking University) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第3期244-252,共9页
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi... In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method. 展开更多
关键词 caustic method stress intensity factor dynamic fracture
下载PDF
Evaluation of Stress Intensity Factors for Multiple Cracked Circular Disks Under Crack Surface Tractions with SBFEM 被引量:3
5
作者 刘钧玉 林皋 +1 位作者 李晓川 徐凤琳 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期417-426,共10页
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical adva... Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem. 展开更多
关键词 stress intensity factors scaled boundary finite element method circular disk orthotropic material surfacetraction
下载PDF
Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces 被引量:3
6
作者 刘钧玉 林皋 《China Ocean Engineering》 SCIE EI 2007年第2期293-303,共11页
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress... The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy. 展开更多
关键词 stress intensity factor scaled boundary finite element method surface tractions anisotropic materials bimaterial interface
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
7
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
8
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
下载PDF
STRESS INTENSITY FACTORS FOR A FINITE PLATE WITH AN INCLINED CRACK BY BOUNDARY COLLOCATION 被引量:3
9
作者 Xing Li Xuemei You 《Analysis in Theory and Applications》 2005年第3期258-265,共8页
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher prec... In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented. 展开更多
关键词 boundary collocation method stress intensity factor CRACK numerical solution
下载PDF
A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials 被引量:2
10
作者 Run-Tao Zhan Zhao-Xia Li Lei Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期403-409,共7页
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-pla... Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials. 展开更多
关键词 Dynamic fracture stress intensity factors Fractional differentiation - Anti-plane fracture Viscoelasticmaterial WIENER-HOPF
下载PDF
Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles 被引量:2
11
作者 ZHOU Suxia XIE Jilong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期766-771,共6页
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can... Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research. 展开更多
关键词 hollow axle surface crack propagation stress intensity factor finite element
下载PDF
Evaluation of mixed-mode stress intensity factors by extended finite element method 被引量:3
12
作者 茹忠亮 赵洪波 尹顺德 《Journal of Central South University》 SCIE EI CAS 2013年第5期1420-1425,共6页
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function... Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient. 展开更多
关键词 stress intensity factor sif interaction integral method extended finite element method (XFEM)
下载PDF
SEMI-WEIGHT FUNCTION METHOD ON COMPUTATION OF STRESS INTENSITY FACTORS IN DISSIMILAR MATERIALS 被引量:2
13
作者 马开平 柳春图 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第11期1241-1248,共8页
Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of contin... Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi_weight functions were obtained as virtual displacement and stress fields with eigenvalue?_lambda. Integral expression of fracture parameters, K Ⅰ and K Ⅱ, were obtained from reciprocal work theorem with semi_weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi_weight function method is a simple, convenient and high precision calculation method. 展开更多
关键词 dissimilar material interface crack stress intensity factor semi-weight function method plane fracture problem
下载PDF
Finite element simulation of stress intensity factors in elastic-plastic crack growth 被引量:3
14
作者 ALSHOAIBI Abdulnaser M ARIFFIN Ahmad Kamal 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1336-1342,共7页
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin... A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation. 展开更多
关键词 Crack propagation Nodal displacement stress intensity factor Adaptive mesh Finite element method (FEM)
下载PDF
Comprehensive investigation of stress intensity factors in rotating disks containing three-dimensional semi-elliptical cracks 被引量:1
15
作者 M.FAKOOR S.M.N.GHOREISHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1565-1578,共14页
Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comp... Initiation and propagation of cracks in rotating disks may cause catastrophic failures. Therefore, determination of fracture parameters under different working con- ditions is an essential issue. In this paper, a comprehensive study of stress intensity factors (SIFs) in rotating disks containing three-dimensional (3D) semi-elliptical cracks subjected to different working conditions is carried out. The effects of mechanical prop- erties, rotational velocity, and orientation of cracks on SIFs in rotating disks under cen- trifugal loading are investigated. Also, the effects of using composite patches to reduce SIFs in rotating disks are studied. The effects of patching design variables such as mechanical properties, thickness, and ply angle are investigated separately. The modeling and analytical procedure are verified in comparison with previously reported results in the literature. 展开更多
关键词 stress intensity factor sif semi-elliptical crack rotating disk finite ele-ment analysis (FEA)
下载PDF
Compensation of stress intensity factors in hollow cylinders containing several cracks under torsion by electro-elastic coating 被引量:1
16
作者 M. KARIMI A. GHASSEMI +1 位作者 A. ATRIAN M. VAHABI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1335-1360,共26页
In this article, a formulation for a hollow cylinder reinforced with an electroelastic layer is investigated. The hollow cylinder and its electro-elastic coating are under the Saint-Venant torsional loading. First, th... In this article, a formulation for a hollow cylinder reinforced with an electroelastic layer is investigated. The hollow cylinder and its electro-elastic coating are under the Saint-Venant torsional loading. First, the solution to the problem containing a Volterra-type screw dislocation is obtained by using the Fourier transform. The problem is then reduced to a set of Cauchy singular integral equations by the distributed dislocation method. Finally, several examples are presented to show the effect of the electro-elastic coating on the reduction of the stress intensity factors at the crack tips. 展开更多
关键词 HOLLOW cylinder electro-elastic COATING stress intensity factor multiple arbitrarily oriented cracks Saint-Venant TORSION electric displacement
下载PDF
A Numerical Investigation of an Abnormal Phenomenon of Stress Intensity Factor(SIF)in a Cracked T-Butt Joint Accounting for Welding Effect 被引量:1
17
作者 Matteo Schiaretti Jie Cai +2 位作者 Xiaoli Jiang Shengming Zhang Dingena Schott 《Journal of Marine Science and Application》 CSCD 2021年第2期343-353,共11页
Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM si... Industry design standards such as BS 7910 deployed some empirical formulas for the prediction of stress intensity factor(SIF) based on simulation results from traditional finite element method(FEM).However,such FEM simulation occasionally failed to convince people due to the large discrepancies compared with engineering practice.As a consequence,inaccuracy predictions via such formulas in engineering standards inevitably occur,which will compromise the safety of structures.In our previous research work,an abnormal phenomenon of SIF in a cracked T-butt joint accounting for welding effect has been observed.Compared with BS 7910,the calculation results of SIF at the surface points of welded specimens cannot be well predicted,with a large discrepancy appearing.In order to explore such problem with an abnormal increase at the surface points of cracked welded specimens,a numerical investigation in terms of SIF among BS 7910,XFEM,and FEM is performed in this paper.Numerical models on both a simple cracked plate without welding effect and a cracked T-butt joint with welding effect are developed through ABAQUS.Parametric studies in terms of the effects of varied crack depth to thickness ratio(a/T) and the effects of crack depth to crack half-length ratio(a/c) are carried out.Empirical solutions from BS 7910 are used for comparison.It is found that the XFEM can provide predictions of SIF at both the crack deepest point and crack surface point of a simple cracked plate as accurate as FEM.For a T-butt joint with a transverse stiffener,a large discrepancy in terms of the weld magnification factors(Mk) occurs at the crack surface point compared with empirical predictions.An exceptional increase of von Mises stress gradient in regions close to the weld-toe is found through the simulation of FEM,whereas a constant stress gradient is obtained through XFEM.The comparison results indicate an inappropriate prediction of SIF by the utilization of the empirical formulas in BS 7910.A more reasonable prediction of the SIF at the surface point of a crack is obtained by the XFEM.Therefore,further updating of the empirical solutions in BS7910 for SIF accounting for welding effect is recommended. 展开更多
关键词 stress intensity factor(sif) CRACK T-butt joint BS 7910 Extended finite element method(XFEM) Finite element method(FEM)
下载PDF
Risk factors for post-traumatic stress disorder among young and middle-aged cancer patients in the intensive care unit:A casecontrol study
18
作者 Lei Chen Guo-Zhou Wang +1 位作者 Yuan-Yuan Chi Jing Zhao 《World Journal of Clinical Cases》 SCIE 2023年第25期5870-5877,共8页
BACKGROUND Young and middle-aged cancer patients in intensive care unit(ICU)often suffer from stress and pressure,causing huge physical and mental damage.Currently,there is few research on post-traumatic stress disord... BACKGROUND Young and middle-aged cancer patients in intensive care unit(ICU)often suffer from stress and pressure,causing huge physical and mental damage.Currently,there is few research on post-traumatic stress disorder(PTSD)among young and middle-aged cancer patients in ICU in China,and the psychological status of patients who have experienced both cancer development and ICU stay is still unclear.AIM To explore the risk factors for PTSD in young and middle-aged patients with cancer in ICU.METHODS Using convenient sampling method,we enrolled 150 young and middle-aged patients with cancer who were admitted to the ICU of our center during the period from July to December 2020.The general data of the patients and PTSDrelated indicators were collected.The Impact of Event Scale-Revised(IES-R)was used for assessing PTSD one month after the discharge from the ICU.Binary Logistic regression analysis was performed to assess the independent risk factors for PTSD in these patients.RESULTS Among these 150 patients,32(21.33%)were found to be with PTSD.Binary Logistic regression analysis revealed that factors significantly associated with PTSD among young and middle-aged patients with cancer in ICU included monthly income(OR=0.24,P=0.02),planned transfers(OR=0.208,P=0.019),and Acute Physiology and Chronic Health Evaluation(APACHE II)score(OR=1.171,P=0.003).CONCLUSION The low monthly income,unplanned transfers,and increased APACHE II score are the risk factors for PTSD in young and middle-aged patients with cancer in ICU. 展开更多
关键词 Post-traumatic stress disorder CANCER Intensive care unit Risk factors
下载PDF
STRESS INTENSITY FACTORS CALCULATION IN ANTI-PLANE FRACTURE PROBLEM BY ORTHOGONAL INTEGRAL EXTRACTION METHOD BASED ON FEMOL 被引量:1
19
作者 Xu Yongjun Yuau Si 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期87-94,共8页
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eig... For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient. 展开更多
关键词 anti-plane problem Hilbert space eigenvalue EIGENFUNCTION orthogonal relationship stress intensity factor finite element method of lines
下载PDF
Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation 被引量:1
20
作者 郭钊 马杭 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期173-179,共7页
The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of... The concept of eigen crack opening displacement (COD) can be defined as the COD of a crack in infinite plate under the tractions acting on the crack surface. By introducing this concept, the eigen COD formulation of boundary integral equation is proposed in this paper, together with the solution procedures for multiple crack problems in plane elasticity. With the proposed approach, the multiple crack problems can be solved with the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix as that in the numerical Green’s function (NGF) approach but without the trouble to determine the complementary solutions since the standard boundary element discretization on the crack surface is no longer required with the proposed approach. Some numerical examples computing the stress intensity factors are presented and compared with those in literature to show the accuracy and the effectiveness of the proposed approach. 展开更多
关键词 crack opening displacement (COD) multiple cracks stress intensity factor boundary integral equation ITERATION
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部