A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. T...A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.展开更多
Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study t...Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar(SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs(0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5.展开更多
基金The project supported by the National Natural Science Foundation of China (10472126)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.
基金financially supported by the China Postdoctoral Science Foundation (No. 2017M620620)the Beijing Natural Science Foundation (No. 2184108)+2 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-073A1)the National Science Foundation for Distinguished Young (No. 41525009)the State Key Research Development Program of China (Nos. 2016YFC0600703 and 2017YFC0804609)
文摘Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar(SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs(0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5.