Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation ...Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H202) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP- 1 1, MMP- 12, MMP-14, MMP- 15, MMP- 17, MMP-23, MMP-28, and β-catenin genes. Methods: The mRNA transcripts in the cells were determined by RT-PCR. Following H202 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diaeetate (DCFH-DA). Caffeie acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results: The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H202 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions: Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress.展开更多
Using large strain two dimension axisymmetric elasto plastic finite element method and the modified law of mixture, the effects of thermal residual stresses on the yielding behavior of short fiber reinforced metal mat...Using large strain two dimension axisymmetric elasto plastic finite element method and the modified law of mixture, the effects of thermal residual stresses on the yielding behavior of short fiber reinforced metal matrix composite and their dependencies on the material structure parameters (fiber volume fraction, fiber aspect ratio and fiber end distance) were studied. It is demonstrated that the stress strain partition parameter can be used to describe the stress transfer from the matrix to the fiber. The variation of the second derivation of the stress strain partition parameter can be used to determine the elastic modulus, the proportion limit, the initial and final yield strengths. In the presence of thermal residual stress, these yielding properties are asymmetric and are influenced differently by the material structure parameters under tensile and compressive loadings.展开更多
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica...The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.展开更多
A modified shear-lag model accounting for the effect of the tensile stiffness of the ma, trix is proposed for solving the stress redistribution due to the failure of fibers and matrix in unidirectionally fibre-reinfor...A modified shear-lag model accounting for the effect of the tensile stiffness of the ma, trix is proposed for solving the stress redistribution due to the failure of fibers and matrix in unidirectionally fibre-reinforced composites. The advantages of this model are simple, reasonable and accurate by comparison with the other similar modified shear-lag models. It can be further extended to study the stress redistribution with interfacial damage between fibres and matrix This paper quantitatively dis cusses the influence of the tensile stiffness ratio of matrix to fibre and of the fibre volume fraction on the stress concentration in the fibres and ma trix adjacent to cut fibres and matrix, and suggests that the influence of the matrix stiffness on the stress concentration can be neglected when the matrix stiffness is low, such as polymer matrix composites, and the fibre volume fraction is high. For other cases such as ceramic and metal matrix composites, the tensile load of the matrix cannot be neglected in the shear-lag analysis.展开更多
By employing the elastic and elastic plastic finite element method(FEM), the effects of matrix feature on the stress transfer mechanisms of short fiber composites are studied. In the calculation, the variations in ma...By employing the elastic and elastic plastic finite element method(FEM), the effects of matrix feature on the stress transfer mechanisms of short fiber composites are studied. In the calculation, the variations in matrix modulus, yield strength and hardening modulus are considered. It is concluded that large deformation of matrix is harmful to the improvement of the mechanical performances of the composites.展开更多
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele...The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [展开更多
In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite ...In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly.展开更多
Polymer matrix RE-Fe giant magnetostrictire composite (GMPC) was prepared using bonding and magnetic field forming technique, and magnetostriction of samples was measured for different compressive stress. The experi...Polymer matrix RE-Fe giant magnetostrictire composite (GMPC) was prepared using bonding and magnetic field forming technique, and magnetostriction of samples was measured for different compressive stress. The experimental results show thai there is certain compressive effect in GMPC. And the influence of compressive stress on magnetostriction of sample was investigated. It offers essential reference for application and device design of GMPC.展开更多
This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior ...This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior by establishing a new mathematical model that describes the variation of shear stress along the interface. This model has been implemented in code in C++. The results revealed that the shear of the interface increases with temperature. This increase is partly due to the difference in expansion coefficient between fiber and matrix. The composite studied is T300/914;Carbon-Epoxy.展开更多
A finite element analysis was carned out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dime...A finite element analysis was carned out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dimensional and random distribution multi-particle unit cell model and plane strain conditions were used. By incorporating the Taylor-based nonlocal plasticity theory, the effect of particle size on the nature, magnitude and distribution of residual stresses of the composites was studied. The magnitude thermal-stress-induced plastic deformation during cooling was also calculated. The results show similarities in the patterns of thermal residual stress and strain distributions for all ranges of particle size. However, they show differences in magnitude of thermal residual stress as a result of strain gradient effect. The average thermal residual stress increases with decreasing particle size, and the residual plastic strain decreases with decreasing particle size.展开更多
Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were dis...Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were discussed. In all the three models compressive stress was found in the radial direction and tensile stress in the tangential direction. It is pointed out that, in real composite system, hexagonal fiber geometry is superior because the distribution and the magnitude of the residual stress are similar to those in single fiber model. In square fiber geometry, it is easier to make the matrix crack due to the larger residual tangential stress. RTS becomes very large and changes violently when the fiber distance is less than 15 μm or so, therefore too high fiber volume is apt to result in matrix crack.展开更多
The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by...The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.展开更多
The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the r...The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the relation among the different assumed stress field, and gives the general method in forming stress field Comparing with the method of eigenvalue analysis, the new method is more efficient展开更多
The instantaneous thermal expansion behavior of-two-phase heterogeneous materials subjected to a uniform temperature change is explored in the present study. The matrix phase is assumed to be a work-hardening ductile ...The instantaneous thermal expansion behavior of-two-phase heterogeneous materials subjected to a uniform temperature change is explored in the present study. The matrix phase is assumed to be a work-hardening ductile metal and the dispersive phase is assumed to consist of either aligned or randomly-oriented, elastic,, spheroidal inhomogeneities. The plastic flow and decreasing stiffness of the matrix during Eshelby's transformation strain of the equivalent inclusions are accounted for by using the deformation theory of plasticity. The explicit results of the instantaneous overall thermal expansion coefficients and the critical inelastic temperature changes are presented for aligned disc- and fiber-inclusions. For the spherical and randomly-oriented spheroidal inclusion, the present study demonstrates that when the yielding of the composites is governed by the average matrix stress, the overall response is always elastic in spite of the temperature change.展开更多
A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths...A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths of the pure matrix, on the basis of which the predicted transverse strengths of a unidirectional (UD) composite are far from reality. It is impossible to reliably measure matrix in situ strengths. This paper focuses on the correlation between in situ and original strengths. Stress concentrations in a matrix owing to the introduction of fibers are attributed to the strength variation. Once stress concentration factors (SCFs) are obtained, the matrix in situ strengths are assigned as the original counterparts divided by them. Such an SCF cannot be defined following a classical approach. All of the relevant issues associated with determining it are systematically addressed in this paper. Analytical expressions for SCFs under transverse tension, transverse compression, and transverse shear are derived. Closed-form and compact formulas for all of the uniaxial strengths of a UD composite are first presented in this paper. Their application to strength predictions of a number of typical UD composites demonstrates the correctness of these formulas.展开更多
Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement ef...Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.展开更多
The effect of interfacial modification on flexural strength of epoxy composites filled with modified ZrB2-Al2O3 composite fillers was investigated in order to explore the stress distribution of modified composites und...The effect of interfacial modification on flexural strength of epoxy composites filled with modified ZrB2-Al2O3 composite fillers was investigated in order to explore the stress distribution of modified composites under external load. The mechanical performance of epoxy composites filled with 0 vol%, 1 vol%, 3 vol% and 5 vol% unmodified and modified ZrB2-Al2O3 fillers was characterized by three point bending(TPB) tests. The fracture surfaces of epoxy composites were observed by scanning electronic microscope(SEM). The results showed that the epoxy composite reinforced by 1 vol%modified fillers exhibited the optimal mechanical performance. According to the Von Mises stress contours simulated by finite element models(FEM) and the SEM images, it was shown that the modified ZrB2-Al2O3 multiphase fillers could homogenize the stress in the epoxy composites due to the transition effect resulted from the interfacial modification layers on the surfaces of multiphase fillers. It contributed to the improvement of mechanical performance of epoxy composites further.展开更多
The formulation for the stress concentration matrix of multiplanar tubular joint with braces subjected to combined load is established in this paper. The formulations for SCF values of multiplanar tubular joints are c...The formulation for the stress concentration matrix of multiplanar tubular joint with braces subjected to combined load is established in this paper. The formulations for SCF values of multiplanar tubular joints are compared with those by Wordsworth and Efthymiou. The stiffening effect and load-interaction effect are discussed. A spatial offshore jacket with braces subjected to combined load is computed as a numerical example. The maximum stress of each multiplanar tubular joint and its location are found through SCF matrix. Finally, the difference between the maximum stresses of multiplanar tubular joints and their corresponding uniplanar tubular joints are discussed.展开更多
基金granted by the Scientific and Technical Research Council of Turkey (TUBITAK) under the project number 105S352 (SBAG-K-110)by the Scientific Research Fund of Fatih University under the project number P50030703
文摘Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H202) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP- 1 1, MMP- 12, MMP-14, MMP- 15, MMP- 17, MMP-23, MMP-28, and β-catenin genes. Methods: The mRNA transcripts in the cells were determined by RT-PCR. Following H202 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diaeetate (DCFH-DA). Caffeie acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results: The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H202 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions: Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress.
文摘Using large strain two dimension axisymmetric elasto plastic finite element method and the modified law of mixture, the effects of thermal residual stresses on the yielding behavior of short fiber reinforced metal matrix composite and their dependencies on the material structure parameters (fiber volume fraction, fiber aspect ratio and fiber end distance) were studied. It is demonstrated that the stress strain partition parameter can be used to describe the stress transfer from the matrix to the fiber. The variation of the second derivation of the stress strain partition parameter can be used to determine the elastic modulus, the proportion limit, the initial and final yield strengths. In the presence of thermal residual stress, these yielding properties are asymmetric and are influenced differently by the material structure parameters under tensile and compressive loadings.
文摘The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.
基金the Guangdong Provincial Natural Science Foundation of China.
文摘A modified shear-lag model accounting for the effect of the tensile stiffness of the ma, trix is proposed for solving the stress redistribution due to the failure of fibers and matrix in unidirectionally fibre-reinforced composites. The advantages of this model are simple, reasonable and accurate by comparison with the other similar modified shear-lag models. It can be further extended to study the stress redistribution with interfacial damage between fibres and matrix This paper quantitatively dis cusses the influence of the tensile stiffness ratio of matrix to fibre and of the fibre volume fraction on the stress concentration in the fibres and ma trix adjacent to cut fibres and matrix, and suggests that the influence of the matrix stiffness on the stress concentration can be neglected when the matrix stiffness is low, such as polymer matrix composites, and the fibre volume fraction is high. For other cases such as ceramic and metal matrix composites, the tensile load of the matrix cannot be neglected in the shear-lag analysis.
文摘By employing the elastic and elastic plastic finite element method(FEM), the effects of matrix feature on the stress transfer mechanisms of short fiber composites are studied. In the calculation, the variations in matrix modulus, yield strength and hardening modulus are considered. It is concluded that large deformation of matrix is harmful to the improvement of the mechanical performances of the composites.
文摘The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [
文摘In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly.
文摘Polymer matrix RE-Fe giant magnetostrictire composite (GMPC) was prepared using bonding and magnetic field forming technique, and magnetostriction of samples was measured for different compressive stress. The experimental results show thai there is certain compressive effect in GMPC. And the influence of compressive stress on magnetostriction of sample was investigated. It offers essential reference for application and device design of GMPC.
文摘This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior by establishing a new mathematical model that describes the variation of shear stress along the interface. This model has been implemented in code in C++. The results revealed that the shear of the interface increases with temperature. This increase is partly due to the difference in expansion coefficient between fiber and matrix. The composite studied is T300/914;Carbon-Epoxy.
基金Project(NCET-04-0324) supported by the Program for New Century Excellent Talents in University
文摘A finite element analysis was carned out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced Al matrix composites. In the simulation, the two-dimensional and random distribution multi-particle unit cell model and plane strain conditions were used. By incorporating the Taylor-based nonlocal plasticity theory, the effect of particle size on the nature, magnitude and distribution of residual stresses of the composites was studied. The magnitude thermal-stress-induced plastic deformation during cooling was also calculated. The results show similarities in the patterns of thermal residual stress and strain distributions for all ranges of particle size. However, they show differences in magnitude of thermal residual stress as a result of strain gradient effect. The average thermal residual stress increases with decreasing particle size, and the residual plastic strain decreases with decreasing particle size.
文摘Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were discussed. In all the three models compressive stress was found in the radial direction and tensile stress in the tangential direction. It is pointed out that, in real composite system, hexagonal fiber geometry is superior because the distribution and the magnitude of the residual stress are similar to those in single fiber model. In square fiber geometry, it is easier to make the matrix crack due to the larger residual tangential stress. RTS becomes very large and changes violently when the fiber distance is less than 15 μm or so, therefore too high fiber volume is apt to result in matrix crack.
文摘The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.
文摘The paper presents a new method for classifying the stress modes in hybrid stress finite element in terms of natural stress modes in finite element and the rank analysis of matrix G in forming element It reveals the relation among the different assumed stress field, and gives the general method in forming stress field Comparing with the method of eigenvalue analysis, the new method is more efficient
基金This work was supported by the National Science Foundation under the Grant 19302017 and 59472031
文摘The instantaneous thermal expansion behavior of-two-phase heterogeneous materials subjected to a uniform temperature change is explored in the present study. The matrix phase is assumed to be a work-hardening ductile metal and the dispersive phase is assumed to consist of either aligned or randomly-oriented, elastic,, spheroidal inhomogeneities. The plastic flow and decreasing stiffness of the matrix during Eshelby's transformation strain of the equivalent inclusions are accounted for by using the deformation theory of plasticity. The explicit results of the instantaneous overall thermal expansion coefficients and the critical inelastic temperature changes are presented for aligned disc- and fiber-inclusions. For the spherical and randomly-oriented spheroidal inclusion, the present study demonstrates that when the yielding of the composites is governed by the average matrix stress, the overall response is always elastic in spite of the temperature change.
文摘A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths of the pure matrix, on the basis of which the predicted transverse strengths of a unidirectional (UD) composite are far from reality. It is impossible to reliably measure matrix in situ strengths. This paper focuses on the correlation between in situ and original strengths. Stress concentrations in a matrix owing to the introduction of fibers are attributed to the strength variation. Once stress concentration factors (SCFs) are obtained, the matrix in situ strengths are assigned as the original counterparts divided by them. Such an SCF cannot be defined following a classical approach. All of the relevant issues associated with determining it are systematically addressed in this paper. Analytical expressions for SCFs under transverse tension, transverse compression, and transverse shear are derived. Closed-form and compact formulas for all of the uniaxial strengths of a UD composite are first presented in this paper. Their application to strength predictions of a number of typical UD composites demonstrates the correctness of these formulas.
基金supported by China National Key BasicResearch Development Program under grant 2006CB705805 entitled"Commercial Utilization of Greenhouse GasEnhanced Oil Recovery and Geological Storage:Study of Nonlinear Percolation Mechanisms of Multi-phase and Multi-component Mixtures of CO2 Flooding"National Key Sci-Tech Major Special Item under grant 2008ZX05009-004 entitled"The Development of Large-scale Oil and GasFields and Coal-bed Methane:New Technology on EnhancedOil Recovery in the Later Period of Oil Field Development".
文摘Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.
基金Funded by National Natural Science Foundation of China(No.51273044)
文摘The effect of interfacial modification on flexural strength of epoxy composites filled with modified ZrB2-Al2O3 composite fillers was investigated in order to explore the stress distribution of modified composites under external load. The mechanical performance of epoxy composites filled with 0 vol%, 1 vol%, 3 vol% and 5 vol% unmodified and modified ZrB2-Al2O3 fillers was characterized by three point bending(TPB) tests. The fracture surfaces of epoxy composites were observed by scanning electronic microscope(SEM). The results showed that the epoxy composite reinforced by 1 vol%modified fillers exhibited the optimal mechanical performance. According to the Von Mises stress contours simulated by finite element models(FEM) and the SEM images, it was shown that the modified ZrB2-Al2O3 multiphase fillers could homogenize the stress in the epoxy composites due to the transition effect resulted from the interfacial modification layers on the surfaces of multiphase fillers. It contributed to the improvement of mechanical performance of epoxy composites further.
文摘The formulation for the stress concentration matrix of multiplanar tubular joint with braces subjected to combined load is established in this paper. The formulations for SCF values of multiplanar tubular joints are compared with those by Wordsworth and Efthymiou. The stiffening effect and load-interaction effect are discussed. A spatial offshore jacket with braces subjected to combined load is computed as a numerical example. The maximum stress of each multiplanar tubular joint and its location are found through SCF matrix. Finally, the difference between the maximum stresses of multiplanar tubular joints and their corresponding uniplanar tubular joints are discussed.