Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a...Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.展开更多
Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting expe...Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting experiment with different stemming lengths was carried out and the results show that the theoretical stemming length, which is 0.73 ~ 0.8 time of burden, is in the range of the experiential length, which is O. 63 - O. 88 time of burden. The blasting results of field experiments with theoretical stemming length are satisfactory, which shows the theoretical derivation and analysis are correct and reliable. The results will supply rock blasting with the theoretical gist of parameters design.展开更多
文摘Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.
文摘Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting experiment with different stemming lengths was carried out and the results show that the theoretical stemming length, which is 0.73 ~ 0.8 time of burden, is in the range of the experiential length, which is O. 63 - O. 88 time of burden. The blasting results of field experiments with theoretical stemming length are satisfactory, which shows the theoretical derivation and analysis are correct and reliable. The results will supply rock blasting with the theoretical gist of parameters design.