A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di...In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.展开更多
Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and ...Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and analysis,this paper presents in detail a field stress back-analysis approach directly from borehole strain changes measured during nearby underground excavation.Essential formulations in major steps and the procedure for the entire analysis process are provided to allow users to follow.The instrument for borehole strain change measurement can be the CSIR or CSIRO stress cells and other borehole strain cells that can measure strains on borehole walls.Strain changes corresponding to the stress changes at a borehole location are calculated in borehole environment.The stress changes due to nearby excavation can be calculated by an analytical model for a single circular opening and simulated by a numerical model for non-circular and multiple openings.These models are based on isotropic,homogeneous and linear elastic assumptions.The analysis of borehole strain changes is accomplished by multiple linear regression based on error minimization and an integrated process provides the best-fit solution directly to the in situ stresses.A statistical technique is adopted for screening outliers in the measurement data,checking measurement compatibility and evaluating the reliability of analysis results.An application example is included to demonstrate the practical application and the analysis procedure.展开更多
This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and af...This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and after” comparison approach taking readings on pipe base metal, weld area and heat affected zone (HAZ) before and after hydrotest. Test results were compared with X-ray testing results for welded joints and with metallographic testing. Test results demonstrate the relevance of applied test conditions and redistribution of residual stresses. A new equation was established for estimating the residual (technological) and operating stresses in other pipelines with a tolerance of 15% in the field of elastic deformation (up to the yield point), according to Hooke law.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si...The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity.展开更多
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from fo...Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses.展开更多
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi...For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.展开更多
In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotationa...In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotational part. Based on these, the complex three dimensional (3-D) problem involving the rotation of principal stress axes is simplified to the combination of the 3-D coaxial model and the theory about pure rotation of principal stress axes that is only around one principal stress axes. The difficulty of analysis is reduced significantly. The concrete calculating method of general 3-D problem is provided and other applications are also presented.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 t...In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.展开更多
Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasona...Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.展开更多
The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciat...The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 + 2.59 MPa) and Poisson ratio (0.37 + 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.展开更多
A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many record...A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many recordings disagree with theoretic calculation using static dislocation model. Secondly, abnormally large strain steps are ob-served at quite a few stations in the tectonically active east-northern China, while in the relatively inactive east-southern China no obvious steps are recorded. It is inferred that seismic stress triggering may significantly affect remote seismic strain field. In other words, whether remote faulting be seismically triggered or not may de-termine the pattern of local seismic strain changes. Further comparison study results of March 11, 1999 Zhangbei earthquake and November 1, 1999 Datong earthquake show that the specific pattern of seismic zones has obvious influence on seismic strain changes in the region. This supports the idea that observed abnormal strain steps might be produced by coseismicly stress-triggered local faulting.展开更多
The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix....The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix. The stress distributions and strain characteristicsat the interface between Cu matrix and Fe particle are studied by elastic-plastic finite elementplane strain model. Larger Fe particles and higher deforming extent of finish rolling are attributedto the intense stress gradient and significant non-homogeneity equivalent strain at the interfaceand accelerate surface peeling of Cu-0.1Fe-0.03P lead frame sheet.展开更多
How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and un...How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.展开更多
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ...We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.展开更多
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite...The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.展开更多
The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A...The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.展开更多
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172211 and 41630633)the National Key Research and Development Project of China(Grant No.2019YFC1509800).
文摘In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.
文摘Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and analysis,this paper presents in detail a field stress back-analysis approach directly from borehole strain changes measured during nearby underground excavation.Essential formulations in major steps and the procedure for the entire analysis process are provided to allow users to follow.The instrument for borehole strain change measurement can be the CSIR or CSIRO stress cells and other borehole strain cells that can measure strains on borehole walls.Strain changes corresponding to the stress changes at a borehole location are calculated in borehole environment.The stress changes due to nearby excavation can be calculated by an analytical model for a single circular opening and simulated by a numerical model for non-circular and multiple openings.These models are based on isotropic,homogeneous and linear elastic assumptions.The analysis of borehole strain changes is accomplished by multiple linear regression based on error minimization and an integrated process provides the best-fit solution directly to the in situ stresses.A statistical technique is adopted for screening outliers in the measurement data,checking measurement compatibility and evaluating the reliability of analysis results.An application example is included to demonstrate the practical application and the analysis procedure.
文摘This research presents an experimental study of analysis of stress strain state SSS of X-60 pipe weld joints employing magnetic anisotropy indicator of mechanical stresses Stress Vision (IMS) using of “before and after” comparison approach taking readings on pipe base metal, weld area and heat affected zone (HAZ) before and after hydrotest. Test results were compared with X-ray testing results for welded joints and with metallographic testing. Test results demonstrate the relevance of applied test conditions and redistribution of residual stresses. A new equation was established for estimating the residual (technological) and operating stresses in other pipelines with a tolerance of 15% in the field of elastic deformation (up to the yield point), according to Hooke law.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.52009016 and 52179118)the Fundamental Research Funds for the Central Universities(Grant No.2022QN1032).
文摘The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity.
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
基金Supported by the National Natural Science Foundation of China(No.32170204)Science and Technology Strategy Research Special Project of Shanxi Province of China(No.202204031401051)+2 种基金the Basic Research Programs of Shanxi Province of China(No.202103021224009)the Teaching Reform and Innovation Project of Colleges and Universities in Shanxi of China(No.J20220046)the Shanxi“1331 Project”.
文摘Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses.
基金Project(51005258) supported by the National Natural Science Foundation of China
文摘For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.
文摘In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotational part. Based on these, the complex three dimensional (3-D) problem involving the rotation of principal stress axes is simplified to the combination of the 3-D coaxial model and the theory about pure rotation of principal stress axes that is only around one principal stress axes. The difficulty of analysis is reduced significantly. The concrete calculating method of general 3-D problem is provided and other applications are also presented.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
基金Project(2012B090600051)supported by Al and Mg Light Alloys Platform on the Unity of Industry,Education and Research Innovation of Guangdong Province,ChinaProject(2012B001)supported by the Ph D Start-up Fund of Guangzhou Research Institute of Non-ferrous Metals,China
文摘In order to develop the appropriate constitutive equation which can precisely model high temperature flow stress of 6063 Al alloy, a series of isothermal hot compression tests were performed at temperatures from 573 to 773 K and strain rates from 0.5 to 50 s?1 on a Gleeble?1500 thermo-simulation machine. Zener–Hollomon parameter in an exponent-type equation was used to describe the combined effects of temperature and strain rate on hot deformation behaviour of 6063 Al alloy, whereas the influence of strain was incorporated in the developed constitutive equation by considering material constants (α,n,Q andA) to be 4th order polynomial functions of strain. The results show that the developed constitutive equation can accurately predict high temperature flow stress of 6063 Al alloy, which demonstrates that it can be suitable for simulating hot deformation processes such as extrusion and forging, and for properly designing the deformation parameters in engineering practice.
文摘Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.
基金funded by the Key Project of Clinical Specialty of Ministry of Public Health,No.2007-353
文摘The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 + 2.59 MPa) and Poisson ratio (0.37 + 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.
基金National Natural Science Foundation of China (40374011), Joint Seismological Foundation of China (1040037) and Investigating Active Faults in Major Cities Program.
文摘A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many recordings disagree with theoretic calculation using static dislocation model. Secondly, abnormally large strain steps are ob-served at quite a few stations in the tectonically active east-northern China, while in the relatively inactive east-southern China no obvious steps are recorded. It is inferred that seismic stress triggering may significantly affect remote seismic strain field. In other words, whether remote faulting be seismically triggered or not may de-termine the pattern of local seismic strain changes. Further comparison study results of March 11, 1999 Zhangbei earthquake and November 1, 1999 Datong earthquake show that the specific pattern of seismic zones has obvious influence on seismic strain changes in the region. This supports the idea that observed abnormal strain steps might be produced by coseismicly stress-triggered local faulting.
基金This project is supported by 863 Program of China (N0.2002AA331112)Doctoral Foundation of Northwestern Polytechnical University.
文摘The microstructure of surface peeling in finish rolled Cu-0.1Fe-0.03P sheetis analyzed by scanning electron microscope and energy dispersive spectroscope. Fe-rich areas ofdifferent contents are observed in the matrix. The stress distributions and strain characteristicsat the interface between Cu matrix and Fe particle are studied by elastic-plastic finite elementplane strain model. Larger Fe particles and higher deforming extent of finish rolling are attributedto the intense stress gradient and significant non-homogeneity equivalent strain at the interfaceand accelerate surface peeling of Cu-0.1Fe-0.03P lead frame sheet.
文摘How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.
文摘We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.
基金Project(2007DFR70070) supported by China-Russia Government-to-Government Scientific and Technical Cooperation Foundation
文摘The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(201206370124)supported by the China Scholarship Council,China
文摘The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.