期刊文献+
共找到34,654篇文章
< 1 2 250 >
每页显示 20 50 100
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
1
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
Application of modified discontinuous deformation analysis to dynamic modelling of the Baige landslide in the Jinsha River
2
作者 XIE Chenxi DENG Jianhui +3 位作者 PENG Xinyan YANG Zhongkang ZHAO Siyuan LI Hua 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2305-2319,共15页
Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating land... Accurate dynamic modeling of landslides could help understand the movement mechanisms and guide disaster mitigation and prevention.Discontinuous deformation analysis(DDA)is an effective approach for investigating landslides.However,DDA fails to accurately capture the degradation in shear strength of rock joints commonly observed in high-speed landslides.In this study,DDA is modified by incorporating simplified joint shear strength degradation.Based on the modified DDA,the kinematics of the Baige landslide that occurred along the Jinsha River in China on 10 October 2018 are reproduced.The violent starting velocity of the landslide is considered explicitly.Three cases with different violent starting velocities are investigated to show their effect on the landslide movement process.Subsequently,the landslide movement process and the final accumulation characteristics are analyzed from multiple perspectives.The results show that the violent starting velocity affects the landslide motion characteristics,which is found to be about 4 m/s in the Baige landslide.The movement process of the Baige landslide involves four stages:initiation,high-speed sliding,impact-climbing,low-speed motion and accumulation.The accumulation states of sliding masses in different zones are different,which essentially corresponds to reality.The research results suggest that the modified DDA is applicable to similar high-level rock landslides. 展开更多
关键词 Discontinuous deformation analysis(DDA) Baige landslide Violent starting velocity movement process Accumulation characteristics
下载PDF
Numerical stress-deformation analysis of cut-off wall in clay-core rockfill dam on thick overburden 被引量:12
3
作者 Si-hong Liu Liu-jiang Wang +1 位作者 Zi-jian Wang Erich Bauer 《Water Science and Engineering》 EI CAS CSCD 2016年第3期219-226,共8页
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye... The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils. 展开更多
关键词 OVERBURDEN layer Core ROCKFILL DAM CUT-OFF wall NUMERICAL analysis stress and deformation analysis
下载PDF
Elastoplastic 3D Deformation and Stress Analysis of Strip Rolling 被引量:5
4
作者 Liu Yuli Jin Xiaoguang Lian Jiachuang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1998年第2期30-33,共6页
An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle i... An elastoplastic method for analyzing the 3D deformation, stress and transverse distribution of tension stress during cold strip rolling is developed. The analysis is based on the elastoplastic variational principle in which a kinematically admissible velocity field is constructed with the lateral flow function as an unknown function. The stress distribution and volume strain distribution are obtained by solving the simultaneous equations formed by the longitudinal differential equation of equilibrium and constitutive equations. The lateral flow function is determined by minimizing the total energy dissipation rate. Experimental investigation was carried out on a reversible cold mill. The front tension stress distributions in cold rolled strips were measured by a multi roll segmented tension sensing shapemeter. The calculated results are in good agreement with the measured ones. 展开更多
关键词 strip rolling 3D deformation and stress elastoplastic analysis variational principle
下载PDF
Three dimension simulation analysis of the interpass stress and deformation during multipass welding 被引量:4
5
作者 张华军 张广军 +2 位作者 张秀兰 蔡春波 高洪明 《China Welding》 EI CAS 2008年第2期72-78,共7页
It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformat... It has been widely studied about the final residual stress and deformation in muhipass welding of thick weldments. But there is a lack of a clear understanding of the interrelationship of interpass stress and deformation during multipass welding. In this study, a three dimension numerical model of a sixteen-pass double V-groove welded joint with 50 mm plate is developed to compute the stress field and deformation by using multiple CPU parallel processing technology. The following factors such as the non-linear of temperature, heat radiation, filling of material step by step and so on are considered. Distribution and evolution law of welding stress in the transverse and longitudinal section is analyzed in this paper, and the interpnss stresses are studied also. At the same time the evolution course of angular deformation amount is analyzed, and the experimental results show that the calculated resuhs accord with the measured results of angular deformation. 展开更多
关键词 interpass stress multipass welding three-dimensional stress field angular deformation numerical simulation
下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:24
6
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
下载PDF
Effective grouting area of jointed slope and stress deformation responses by numerical analysis with FLAC^(3D) 被引量:3
7
作者 ZHU Zi-qiang LIU Qun-yi +1 位作者 ZENG Fan-he QING Du-gan 《Journal of Coal Science & Engineering(China)》 2009年第4期404-408,共5页
To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; ... To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly. 展开更多
关键词 SLOPE stress deformation cranny FLAC^3D
下载PDF
Deformation and Stress Analysis of the Deepwater Steel Lazy Wave Riser Subjected to Internal Solitary Waves 被引量:1
8
作者 LI Fuheng GUO Haiyan +2 位作者 GU Honglu LIU Zhen LI Xiaomin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期377-392,共16页
The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties... The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties of the SLWR with large deformation characteristics under internal wave excitation.A numerical scheme of the SLWR is constructed using the slender-rod theory,and the internal solitary wave(ISW)with a two-layer seawater model is simulated by the extended Korteweg-deVries equation.The finite element method combined with the Newmark-βmethod is applied to discretize the equations and update the time integration.The ISW excitation combined with vessel motion on the dynamic deformation and stress of the SLWR is investigated,and extensive simulations of the ISW parameters,including the interface depth ratio and density difference,are carried out.Case calculation reveals that the displacement of the riser in the lower interface layer increases significantly under the ISW excitation,and the stresses at a part of both ends grow evidently.Moreover,the mean value of riser responses under a combination of vessel motion and ISW coincides with the ISW-induced ones.Furthermore,the dynamic responses along the whole riser,including the displacement amplitudes,bending moment amplitudes,and stress amplitudes,almost increase with the increase in interface depth ratios and density differences. 展开更多
关键词 steel lazy wave riser(SLWR) internal solitary wave(ISW) slender-rod theory deformation stress
下载PDF
Residual Stress and Deformation Analysis of Static Bonding Multi-layer Pyrex7740 Glass and Aluminum
9
作者 阴旭 刘翠荣 +2 位作者 NAN Yue DU Chao REN Yuyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期100-104,共5页
Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can... Residual stresses and deformation of static bonding multi-layer Pyrex7740 glass and aluminum have important effects on performances of bonding parts. The stress and strain finite element analysis of anodic bonding can optimize the structure and process design, reduce the workload of the experiments, shorten the production cycle, improve the bonding quality, and reduce the process costs. In this paper, residual stresses and deformation in the static bonding two-layer (glass/aluminum), three-layer (glass/aluminum/ glass),five-layer(glass/aluminum/glass/aluminum/glass)and seven-layer (glass/aluminum/glass/aluminum/glass/ aluminum/glass) samples have been analyzed using nonlinear finite element simulation software MARC. The simulation results show that the shear stress distribution and deformation distribution in different multi-layer glass and aluminum samples are similar. The stress distribution along thickness at different typical positions in all multi-layer samples has characteristics of pulse pattern, which has pulse peak at the position of transition layers and then decreases abruptly to the minimum value at the positions of glass and aluminum. The maximum shear stress is located in the outside surface area in the transition layer between the top unconstrained glass layer and aluminum layer. The displacement distribution along thickness in all multi-layer samples increases gradually fi'om the constrained bottom glass layer to the top unconstrained glass layer with abrupt step increase in the aluminum layers, The maximum deformations occur in aluminum layers. It is found that the minimum deformation distortion and the minimum shear stress occur in the three-layer static bonding sample. 展开更多
关键词 static bonding ALUMINUM pyrex glass residual stress deformation
下载PDF
Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory
10
作者 Mohammad Arefi Ali Tabatabaeian Masoud Mohammadi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期64-74,共11页
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ... The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation. 展开更多
关键词 Reinforced composite plate Graphene platelet Sinusoidal shear deformation theory Pasternak’s foundation stress and deformation analysis
下载PDF
The Deformation and Stress Analysis of Na Ba Reservoir Concrete Face Rock-Fill Dam
11
作者 Yin Shaofei Peng Hui +3 位作者 Wu Fan Wen Chen Jin Ke Han Kai 《Journal of Environmental Science and Engineering(B)》 2016年第10期489-494,共6页
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas... Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring. 展开更多
关键词 Concrete face rock-fill dam deformation and stress analysis Duncan-Chang constitutive model nonlinear finite element analysis.
下载PDF
Application of neural network merging model in dam deformation analysis 被引量:5
12
作者 张帆 胡伍生 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期441-444,共4页
In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the m... In order to improve the prediction accuracy and test the generalization ability of the dam deformation analysis model, the back-propagation(BP) neural network model for dam deformation analysis is studied, and the merging model is built based on the neural network BP algorithm and the traditional statistical model. The three models mentioned above are calculated and analyzed according to the long-term deformation observation data in Chencun Dam. The analytical results show that the average prediction accuracies of the statistical model and the BP neural network model are ~ 0.477 and +- 0.390 mm, respectively, while the prediction accuracy of the merging model is ~0. 318 mm, which is improved by 33% and 18% compared to the other two models, respectively. And the merging model has a better generalization ability and broad applicability. 展开更多
关键词 dam deformation analysis neural network statistical model merging model
下载PDF
Predictive analysis of stress regime and possible squeezing deformation for super-long water conveyance tunnels in Pakistan
13
作者 Wang Chenghu Bao Linhai 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期825-831,共7页
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ... The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately. 展开更多
关键词 Super-long water conveyance tunnel In-situ stress state Squeezing deformation Prediction analysis Kohala hydropower plant
下载PDF
Characterizing permeability-porosity relationships of porous rocks using a stress sensitivity model in consideration of elastic-structural deformation and tortuosity sensitivity
14
作者 Ronghe Xu Liqin Wang +1 位作者 Xiaoli Zhao Yuze Mao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3437-3451,共15页
Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity ... Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity models to describe the relationship and obtain a comprehensive stress sensitivity of porous rock.However,the limitations of elastic deformation calculation and incompleteness of considered tortuosity sensitivity lead to the fact that the existing stress sensitivity models are still unsatisfactory in terms of accuracy and generalization.Therefore,a more accurate and generic stress sensitivity model considering elastic-structural deformation of capillary cross-section and tortuosity sensitivity is proposed in this paper.The elastic deformation is derived from the fractal scaling model and Hooke's law.Considering the effects of elastic-structural deformation on tortuosity sensitivity,an empirical formula is proposed,and the conditions for its applicability are clarified.The predictive performance of the proposed model for the permeability-porosity relationships is validated in several sets of publicly available experimental data.These experimental data are from different rocks under different pressure cycles.The mean and standard deviation of relative errors of predicted stress sensitivity with respect to experimental data are 2.63%and 1.91%.Compared with other models,the proposed model has higher accuracy and better predictive generalization performance.It is also found that the porosity sensitivity exponent a,which can describe permeability-porosity relationships,is 2 when only elastic deformation is considered.a decreases from 2 when structural deformation is also considered.In addition,a may be greater than 3 due to the increase in tortuosity sensitivity when tortuosity sensitivity is considered even if the rock is not fractured. 展开更多
关键词 stress sensitivity model Permeability-porosity relationships Elastic-structural deformation Tortuosity stress sensitivity
下载PDF
Prevalence of post-traumatic stress disorder and depressive symptoms among civilians residing in armed conflict-affected regions:a systematic review and meta-analysis
15
作者 Syed Hassan Ahmed Aabia Zakai +3 位作者 Maha Zahi Muhammad Youshay Jawad Rui Fu Michael Chaiton 《General Psychiatry》 CSCD 2024年第3期324-334,共11页
Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and de... Background Globally,populations afflicted by armed conflict are known to have high rates of mental health disorders.Aims This meta-analysis aims to estimate the prevalence of post-traumatic stress disorder(PTSD)and depressive symptoms among civilians residing in armed conflictaffected regions.Methods This meta-analysis was conducted in accordance with the Preferred Reporting Items forSystematic Reviews and Meta-Analyses.A literature search employing MEDLINE(R),Embase Classic+Embase,APA PsyclNFO,Ovid Healthstar,Journal@Ovid Full Text,Cochrane,PTSDpubs and CINAHL was conducted from inception until 19 March 2024 to identify relevant studies.Quality assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies,and a Comprehensive Meta-Analysiswas usedto conduct the statistical analysis.Results The search yielded 38595 articles,of which 57 were considered eligible for inclusion.The included studies comprised data from 64596 participants.We estimated a prevalence of 23.70%(95%CI 19.50%to28.40%)forPTSD symptomsand 25.60%(95%Cl 20.70%to 31.10%)for depressive features among war-afflicted civilians.The subgroup analysis based on time since the war and the country's economic status revealed the highest prevalence for both PTSD and depressive symptoms was present during the years of war and in low/middle-incomecountries.Conclusions The results of this study provide conclusive evidence of the detrimental impacts of armed conflict on mental health outcomes.Hence,it is crucial to emphasise the significance of both physical and mental health in the aftermath of war and take appropriate humanistic measures to overcome challenges in the management of psychiatric illnesses. 展开更多
关键词 analysis stress armed
下载PDF
Analysis and verification of electrodynamic force,thermal stress and current sharing for CRAFT converter structure design
16
作者 王重马 石朝毅 +6 位作者 张秀青 卢文武 张胜 高先和 许涛 邵兴星 黄连生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期104-111,共8页
In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research... In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements. 展开更多
关键词 electrodynamic analysis thermal stress current-sharing characteristics CRAFT
下载PDF
Non-dimensional analysis on blast wave propagation in foam concrete:Minimum thickness to avoid stress enhancement
17
作者 Ya Yang Xiangzhen Kong Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期30-46,共17页
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti... Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering. 展开更多
关键词 Foam concrete Blast wave propagation Non-dimensional analysis stress enhancement
下载PDF
Genome-Wide Identification and Expression Analysis of the GSK3 Gene Family in Sunflower under Various Abiotic Stresses
18
作者 Xianwen Ji Ziying Jiang +2 位作者 Jichao Wang Lili Dong Xinyi Deng 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第8期1839-1850,共12页
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab... Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance. 展开更多
关键词 SUNFLOWER abiotic stress GSK expression analysis
下载PDF
Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm 被引量:12
19
作者 Fu-hai Yao Shao-heng Guan +4 位作者 He Yang Yuan Chen Huan-feng Qiu Gang Ma Qi-wen Liu 《Water Science and Engineering》 EI CAS CSCD 2019年第3期196-204,共9页
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr... Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM. 展开更多
关键词 SHUIBUYA ROCKFILL DAM Parameter BACK analysis Response surface method Duncan EB model TIME-DEPENDENT deformation
下载PDF
Analysis and application of automatic deformation monitoring data for buildings and structures of mining area 被引量:9
20
作者 XIAO Jie1, 2, 3, ZHANG Jin4 1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 2. Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 3. Graduate School of Chinese Academy of Sciences, Beijing 100049, China 4. Department of Surveying and Mapping, Taiyuan University of Technology, Taiyuan 030024, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期516-522,共7页
The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects cont... The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making. 展开更多
关键词 WAVELET analysis KALMAN FILTERING deformation monitoring data analysis MINE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部