Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM ...Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM were focused on the analog domain,however,the PIM distortion cannot be eliminated completely with the approaches.Meanwhile,some researchers attempt to tackle the problem through digital signal processing,nevertheless,the proposed methods were not suitable for the practical satellite communication scenario.In this paper,we present a general scheme for the adaptive feedforward PIM cancellation.High-order PIM signals at baseband are estimated by modeling the PIM distortion with Hammerstein model in the digital domain.Based on the reconstructed PIM signal,we adopt the least mean square algorithm to adaptively mitigate the PIM interference for tracking the variation of PIM.The time and frequency synchronization of PIM are based on the correlation of the peak of received signals with the corresponding reconstructed PIM signal.Practical experimental results show that the scheme can effectively cancel the PIM interference,and achieve an interference suppression gain more than 20dB.展开更多
The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This...The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.展开更多
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is ...An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.展开更多
In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth...In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.展开更多
By employing a two-center model, the total and differential cross sections in the photodetachment of "a negative molecular ion" are studied theoreticedly and obtained for the case of light polarization paredlel to t...By employing a two-center model, the total and differential cross sections in the photodetachment of "a negative molecular ion" are studied theoreticedly and obtained for the case of light polarization paredlel to the molecular axis. We find that in contrast to the smooth behavior of the total cross section for perpendicular polarized light, the cross section for parallel polarized light shows an interesting oscillatory structure. The oscillations in the toted cross section may provide a method to determine the distance between the two centers. We explain the oscillation in the toted cross section as an interference effect using closed-orbit theory. We also cedculated the detached-electron flux distributions on a screen placed at a large distance from the negative molecular ion. The distributions display multiple-ring-like interference patterns. Such interference patterns are similar to those in the photodetachment microscopy experiments.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
Based on miniaturized components' characteristics, the method of assembling miniaturized gear and shaft together with corresponding calculating model of the interference amount are proposed. On the basis of main effe...Based on miniaturized components' characteristics, the method of assembling miniaturized gear and shaft together with corresponding calculating model of the interference amount are proposed. On the basis of main effecting factors analysis on the gear and shaft assembling interference amount, calculating formula including all factors effective on the interference amount necessary for reliable system running was built up. The methods of reverse calculating theoretical model was used to build up the equivalent simulation model of the theoretical one, together with simulation verification and case study for calculating formula. The results show that the cold assembling method is applicable for miniaturized gear and shaft, but in the assembling process, the interference amount compensating the shape error of contacting surfaces takes a large proportion, which is the main cause of stress variance on contacting surfaces.展开更多
In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
A 2D stress strength interference model (2D-SSIM) considering that the fatigue reliability of engineering structural components has close relationship to load asymmetric ratio and its variability to some extent is put...A 2D stress strength interference model (2D-SSIM) considering that the fatigue reliability of engineering structural components has close relationship to load asymmetric ratio and its variability to some extent is put forward. The principle, geo-metric schematic and limit state equation of this model are presented. Reliability evaluation for a kind of diesel engine crankshaft was made based on this theory, in which multi-axial loading fatigue criteria was employed. Because more important factors, i.e. stress asymmetric ratio and its variability, are considered, it theoretically can make more accurate evaluation for structural com-ponent reliability than the traditional interference model. Correspondingly, a Monte-Carlo Method simulation solution is also given. The computation suggests that this model can yield satisfactory reliability evaluation.展开更多
To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform ph...To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.展开更多
This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model....This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model. Using the spatial and temporal correlation of a geometrical one-ring model, a close-formed expression of intercarrier interference due to the Doppler effect caused by the movement of receiver is derived under the isotropic scattering conditions and non-isotropic scattering conditions. The analytical results are verified by Monte Carlo simulations. We use the generated channels to investigate MIMO-OFDM intercarrier interference under various channel parameters. It can be shown that more than 95% oflCI power comes from five neighboring subcarriers.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplit...For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.展开更多
AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude...AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.展开更多
Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
Laser self-mixing interference(SMI) wave plate measurement method is a burgeoning technique for its simplicity and efficiency. But for the non-coated sample, the reflected light from the surface can seriously affect...Laser self-mixing interference(SMI) wave plate measurement method is a burgeoning technique for its simplicity and efficiency. But for the non-coated sample, the reflected light from the surface can seriously affect the measurement results.To analyze the reason theoretically, a self-consistent model for laser operation with a sub-external and an external cavity is established, and the sub-external cavity formed by the sample and a cavity mirror is proved to be the main error source.A synchronous tuning method is proposed to eliminate the sub-external cavity effect. Experiments are carried out on the synchronously tuning double external cavities self-mixing interference system, and the error of the system is in the range of -0.435°~0.387° compared with the ellipsometer. The research plays an important role in improving the performance and enlarging the application range of the laser self-mixing interference system.展开更多
Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influenci...Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.展开更多
基金financially supported by the Joint Fund of NSFC and the General Purpose Technology Research Program under the contract U1636125,NSFC under the contract U1836201
文摘Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM were focused on the analog domain,however,the PIM distortion cannot be eliminated completely with the approaches.Meanwhile,some researchers attempt to tackle the problem through digital signal processing,nevertheless,the proposed methods were not suitable for the practical satellite communication scenario.In this paper,we present a general scheme for the adaptive feedforward PIM cancellation.High-order PIM signals at baseband are estimated by modeling the PIM distortion with Hammerstein model in the digital domain.Based on the reconstructed PIM signal,we adopt the least mean square algorithm to adaptively mitigate the PIM interference for tracking the variation of PIM.The time and frequency synchronization of PIM are based on the correlation of the peak of received signals with the corresponding reconstructed PIM signal.Practical experimental results show that the scheme can effectively cancel the PIM interference,and achieve an interference suppression gain more than 20dB.
基金supported by the National Natural Science Foundation of China(Grant No.60776034)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The instantaneous reversible soft logic upset induced by the electromagnetic interference(EMI) severely affects the performances and reliabilities of complementary metal–oxide–semiconductor(CMOS) inverters. This kind of soft logic upset is investigated in theory and simulation. Physics-based analysis is performed, and the result shows that the upset is caused by the non-equilibrium carrier accumulation in channels, which can ultimately lead to an abnormal turn-on of specific metal–oxide–semiconductor field-effect transistor(MOSFET) in CMOS inverter. Then a soft logic upset simulation model is introduced. Using this model, analysis of upset characteristic reveals an increasing susceptibility under higher injection powers, which accords well with experimental results, and the influences of EMI frequency and device size are studied respectively using the same model. The research indicates that in a range from L waveband to C waveband, lower interference frequency and smaller device size are more likely to be affected by the soft logic upset.
文摘An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.
文摘In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.
基金National Natural Science Foundation of China under Grant No.90403028
文摘By employing a two-center model, the total and differential cross sections in the photodetachment of "a negative molecular ion" are studied theoreticedly and obtained for the case of light polarization paredlel to the molecular axis. We find that in contrast to the smooth behavior of the total cross section for perpendicular polarized light, the cross section for parallel polarized light shows an interesting oscillatory structure. The oscillations in the toted cross section may provide a method to determine the distance between the two centers. We explain the oscillation in the toted cross section as an interference effect using closed-orbit theory. We also cedculated the detached-electron flux distributions on a screen placed at a large distance from the negative molecular ion. The distributions display multiple-ring-like interference patterns. Such interference patterns are similar to those in the photodetachment microscopy experiments.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金Sponsored bythe Ministerial Level Advanced Research Foundation (K130306068)
文摘Based on miniaturized components' characteristics, the method of assembling miniaturized gear and shaft together with corresponding calculating model of the interference amount are proposed. On the basis of main effecting factors analysis on the gear and shaft assembling interference amount, calculating formula including all factors effective on the interference amount necessary for reliable system running was built up. The methods of reverse calculating theoretical model was used to build up the equivalent simulation model of the theoretical one, together with simulation verification and case study for calculating formula. The results show that the cold assembling method is applicable for miniaturized gear and shaft, but in the assembling process, the interference amount compensating the shape error of contacting surfaces takes a large proportion, which is the main cause of stress variance on contacting surfaces.
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
文摘A 2D stress strength interference model (2D-SSIM) considering that the fatigue reliability of engineering structural components has close relationship to load asymmetric ratio and its variability to some extent is put forward. The principle, geo-metric schematic and limit state equation of this model are presented. Reliability evaluation for a kind of diesel engine crankshaft was made based on this theory, in which multi-axial loading fatigue criteria was employed. Because more important factors, i.e. stress asymmetric ratio and its variability, are considered, it theoretically can make more accurate evaluation for structural com-ponent reliability than the traditional interference model. Correspondingly, a Monte-Carlo Method simulation solution is also given. The computation suggests that this model can yield satisfactory reliability evaluation.
基金Supported by the National Basic Research Program of China(No.2007CB307105)the National Natural Science Foundation of China(No.60932005)
文摘To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.
文摘This paper investigates the distribution of intercarrier interference (ICI) in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems based on the geometrical one-ring model. Using the spatial and temporal correlation of a geometrical one-ring model, a close-formed expression of intercarrier interference due to the Doppler effect caused by the movement of receiver is derived under the isotropic scattering conditions and non-isotropic scattering conditions. The analytical results are verified by Monte Carlo simulations. We use the generated channels to investigate MIMO-OFDM intercarrier interference under various channel parameters. It can be shown that more than 95% oflCI power comes from five neighboring subcarriers.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
基金supported by Science and Technology Project of SGCC(SG1021)
文摘For developing ultra-high voltage(UHV) AC power transmission systems,it is important to precisely estimate and to limit the radio interference(RI) level of power lines.Based on the stochastic characteristics in amplitude and repetition rate of induced corona current,by using the probability theory and mathematical statistics,we establish a stochastic model for the wide-sense stationary random process of corona discharges.Then combining the stochastic model with model-propagation-analysis method,the RI levels under three-phase UHV AC transmission lines are calculated.The results of the calculation based on stochastic model method and International Council on Large Electric Systems(CIGRE) excitation function are compared with that based on semi-empirical method and some other excitation functions.The stochastic model based on different excitation functions is also adopted to simulate the RI levels under finite test lines with two opened terminations.The results indicate that with the same average maximum gradient on conductor surface and the same conductor type,the number of corona discharge per unit length is one of the main reasons that causes the difference between different excitation functions.It is also concluded that for a long test line,the effect of standing wave on RI field strength is negligible in the middle of the line,but obvious near both terminations: for a 10-km line,the maximum difference in RI field strength is 2.78 dB,between the peak value of the standing wave near the ends and the steady value near the middle of the line.
基金Supported by The Science and Technology Fund of Jilin Province,No. 200505219
文摘AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
文摘Laser self-mixing interference(SMI) wave plate measurement method is a burgeoning technique for its simplicity and efficiency. But for the non-coated sample, the reflected light from the surface can seriously affect the measurement results.To analyze the reason theoretically, a self-consistent model for laser operation with a sub-external and an external cavity is established, and the sub-external cavity formed by the sample and a cavity mirror is proved to be the main error source.A synchronous tuning method is proposed to eliminate the sub-external cavity effect. Experiments are carried out on the synchronously tuning double external cavities self-mixing interference system, and the error of the system is in the range of -0.435°~0.387° compared with the ellipsometer. The research plays an important role in improving the performance and enlarging the application range of the laser self-mixing interference system.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.