期刊文献+
共找到5,158篇文章
< 1 2 250 >
每页显示 20 50 100
Stress-induced martensitic transformation in (Ni_(47)Ti_(44))(100-x)Nb_x shape memory alloys with wide hysteresis
1
作者 何向明 赵龙志 +2 位作者 多树旺 张荣发 戎利建 《中国有色金属学会会刊:英文版》 CSCD 2006年第B01期42-46,共5页
The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100?xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in d... The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100?xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling, and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100?xNbx alloys. 展开更多
关键词 镍钛铌合金 形状记忆合金 马氏体相转变 磁滞 应力
下载PDF
Pre-existing orthorhombic embryos-induced hexagonal-orthorhombic martensitic transformation in MnNiSi_(1-x)(CoNiGe)_x alloy
2
作者 张婷婷 龚元元 +1 位作者 鲁子骞 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期691-699,共9页
The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)al... The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos. 展开更多
关键词 martensitic transformation MnMX alloy orthorhombic embryo crystallography relationship
下载PDF
Description of martensitic transformation kinetics in Fe-C-X(X = Ni,Cr,Mn,Si) system by a modified model
3
作者 Xiyuan Geng Hongcan Chen +3 位作者 Jingjing Wang Yu Zhang Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1026-1036,共11页
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat... Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision. 展开更多
关键词 Fe-C-X system martensitic transformation kinetics curve semi-empirical model nucleation activation energy
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
4
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Isolated Hyperacute T-Waves in West Nile Encephalitis Indicating Atypical Variant of Stress-Induced Cardiomyopathy
5
作者 Soomal Rafique Nadeem Khan Momin Siddique 《Journal of Biosciences and Medicines》 2024年第2期303-310,共8页
Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms an... Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms and respiratory decline were finally explained by the diagnosis of West Nile-encephalitis. During her admission, the isolated peaked T-waves indicated the underlying stress-induced cardiomyopathy. The absence of all other causes of hyperacute T-waves, their subsequent resolution with the resolution of infection and improvement in wall motion abnormalities, further supported the association. This case highlights the importance of considering hyperacute T-waves in an approach towards the diagnosis of WNV-encephalitis related atypical variant of stress-induced cardiomyopathy. 展开更多
关键词 West Nile Virus encephalitis WNV Hyperacute T-Waves Takotsubo Cardiomyopathy Atypical/Inverted Variant of stress-induced Cardiomyopathy CMP
下载PDF
Stress-Induced Martensitic Transformation of Zr_(50)Cu_(25)Ni_(10)Co_(15) Nanocrystals Embedded in an Amorphous Matrix
6
作者 W.H.Gao X.Y.Yi +3 位作者 X.L.Meng G.Song W.Cai L.C.Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期276-280,共5页
The stress induced martensitic phase transformation of spherical ZrCu nanocrystals embedded in an amorphous matrix was studied in this paper. Microstructural observations revealed that the martensitic transformation o... The stress induced martensitic phase transformation of spherical ZrCu nanocrystals embedded in an amorphous matrix was studied in this paper. Microstructural observations revealed that the martensitic transformation of the nanocrystal was hindered by the surrounding amorphous coating. The existence of two-step transformation from the austenite phase(B2) to the base structure martensite(B19') and finally to the most stable superstructure martensite(Cm) was also demonstrated. The Cm martensite with(021) type I twinning symmetrically accommodation was surrounded by the B19' martensite with dislocation morphologies. 展开更多
关键词 Nanocrystals ZrCu martensitic phase transformation Shape memory Transmission electron microscopy
原文传递
First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation,mechanical and magnetic properties 被引量:1
7
作者 Huaxin Qi Jing Bai +7 位作者 Miao Jin Jiaxin Xu Xin Liu Ziqi Guan Jianglong Gu Daoyong Cong Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期930-938,共9页
The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125... The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. 展开更多
关键词 Ni–Mn–Ti-based all-d-metal Heusler alloys first-principles calculations mechanical properties martensitic transformation magnetic properties
下载PDF
Hydrogen Embrittlement of Nitrogenating Layer on Martensitic Alloys
8
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Shimon Bashan Barak Weizman Denis Panchenko Michael Mansano Elinor Itzhak Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期161-171,共11页
Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion... Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion through the surface and chemical gas-metal reaction. The inner nitriding interaction involves the simultaneous penetration and formation of a solid solution, as well as the interaction of nitrogen with specific alloying elements, resulting in the development of homogeneous and heterogeneous structures. Our study concludes that the observed intergranular hydrogen embrittlement and crack formation during the surface nitridation process of AMS 5719 martensite alloy steel can be attributed to the ammonium concentration of approximately 50% at a temperature of 530˚C. 展开更多
关键词 Hydrogen Embrittlement Nitriding Coat Cracks martensite Steel Surface Hardness
下载PDF
Simulation of the Behaviour Laws in the Thermal Affected Zones of the 13Cr-4Ni Martensitic Stainless Steel
9
作者 Marcel Julmard Ongoumaka Yandza Harmel Obami-Ondon Christian Tathy 《Modern Mechanical Engineering》 2023年第4期63-76,共14页
During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficu... During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data. 展开更多
关键词 Behaviour Laws martensitic Stainless Steel Residual Stresses Strain Numerical Simulation
下载PDF
Effect of low-temperature tempering on the mechanical properties of cold-rolled martensitic steel
10
作者 ZHU Xiaodong XUE Peng LI Wei 《Baosteel Technical Research》 CAS 2023年第1期11-16,共6页
Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high stre... Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high strength despite its low alloy content.As the strength of cold-rolled martensitic steel increases, the martensite and carbon content also increases, leading to a decrease in bending properties and toughness.In this paper, the effect of various tempering parameters on the bending property and impact toughness of a quenched cold-rolled martensitic steel sheet was studied.It is found that after quenching, the ductility and impact toughness of the experimental steel are improved using low-temperature heat treatment.The optimal tempering conditions for ductility and toughness are analyzed. 展开更多
关键词 water quenching TEMPERING ultrahigh strength martensitic steel sheet
下载PDF
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
11
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 Ferritic/martensitic steel Orthogonal design M23C6 carbide Ductile-to-brittle transition temperature
下载PDF
Research on Stress-Induced Nucleation ofε-Martensite in Fe-17Mn-10Cr-5Si-4Ni Polycrystalline Alloy
12
作者 LIUQing-suo GUNan-ju LINCheng-xin 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2003年第2期51-54,共4页
The relation between stacking fault overlap and martensitic nucleation in Fe-17Mn-10Cr-5Si-4Ni alloy was studied.The arrayed structure of dislocations and characteristics ofε-martensite formation under stress were in... The relation between stacking fault overlap and martensitic nucleation in Fe-17Mn-10Cr-5Si-4Ni alloy was studied.The arrayed structure of dislocations and characteristics ofε-martensite formation under stress were in-situ observed by TEM.The results reveal thatε-martensite nucleates at the top of stacking faults overlapped band,where the ordered arrayed structure of Shockley partial dislocations exists.External stress promotesε-martensitic nucleation ability because of accelerated ordering of Shockley partial dislocations in stacking faults overlapped band. 展开更多
关键词 stacking fault overlap NUCLEATION location stress-inducedε-martensite
下载PDF
Superelastic behavior and stabilization of stress-induced martensite in Cu-13.4Al-4.0Ni single crystals
13
作者 陈庆福 赵连城 +1 位作者 R.Stalmans J.van Humbeeck 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期161-165,共5页
By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show ... By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [ 展开更多
关键词 SUPERELASTICITY STABILIZATION Stress induced martensite CuAlNi single crystal DESTABILIZATION
下载PDF
A Detailed Observation on Successive Stress-Induced Martensite Transformation in CuAlMnZnZr Alloy Poly crystalline Above A_(f)
14
作者 LiZhou WangMing-pu TangWang GuoMing-xing 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期45-48,共4页
The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform P ] matrix, two or more orientation plates of M18R marte... The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform P ] matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation. 展开更多
关键词 应力诱发 马氏体变换 变换磁滞 CuAlMnZnZr 形状记忆合金
下载PDF
CHARACTERISTICS OF STRESS-INDUCED TRANSFORMATION AND MICROSTRUCTURE EVOLUTION IN Cu-BASED SMA 被引量:7
15
作者 Cheng Peng Xingyao Wang Yongzhong Huo 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期1-8,共8页
The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental observations, it was found that the stres... The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental observations, it was found that the stress-induced martensitic transformation process of single crystal Cu-based SMA under uniaxial tension condition consisted of three periods: nucleation, mixed nucleation and growth, and merging due to growth. During the nucleation, the stress dropped rapidly and the number of interfaces increased very fast while the phase fraction increased slowly. In the second period, both the stress and the interface number changed slightly but the phase fraction increased dramatically. Finally, the stress and the phase fraction changed slowly while the number of interfaces decreased quickly. Moreover, it was found that the transformation could be of multi-stage: sharp stress drops at several strains and correspondingly, the nucleation and growth process occurred quasi-independently in several parts of the sample. 展开更多
关键词 stress-induced martensitic transformation CuAINi single crystal microstructure nucleation GROWTH
下载PDF
Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel 被引量:50
16
作者 Chunfang WANG Maoqiu WANG Jie SHI Weijun HUI Han DONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期659-664,共6页
Martensitic microstructure in quenched and tempered 17CrNiMo6 steel with the prior austenite grain size ranging from 6 μm to 199 μm has been characterized by optical metallography (OM), scanning electron microsco... Martensitic microstructure in quenched and tempered 17CrNiMo6 steel with the prior austenite grain size ranging from 6 μm to 199 μm has been characterized by optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The yield strength and the toughness of the steel with various prior austenite grain sizes were tested and correlated with microstructure characteristics. Results show that both the prior austenite grain size and the martensitic packet size in the 17CrNiMo6 steel follow a HalI-Petch relation with the yield strength. When the prior austenite grain size was refined from 199 μm to 6 μm , the yield strength increased by 235 MPa, while the Charpy U-notch impact energy at 77 K improved more than 8 times, indicating that microstructure refinement is more effective in improving the resistance to cleavage fracture than in increasing the strength. The fracture surfaces implied that the unit crack path for cleavage fracture is identified as being the packet. 展开更多
关键词 martensitic steel Grain refinement STRENGTH Impact toughness Cleavage fracture
下载PDF
Design of a low-alloy high-strength and high-toughness martensitic steel 被引量:8
17
作者 Yan-jun Zhao Xue-ping Ren +1 位作者 Wen-chao Yang Yue Zang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期733-740,共8页
To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstru... To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500℃ and 700℃, M7C3 exits below 720℃, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280℃, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively. 展开更多
关键词 high strength steel martensitic steel alloy design THERMODYNAMICS alloying elements microstructuremechanical properties
下载PDF
Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium 被引量:4
18
作者 Ye, Wenjun Mi, Xujun Song, Xiaoyun 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期227-230,共4页
关键词 titanium alloy martensitic transformation alloying effect
下载PDF
First-principles study on the effect of Hf content on martensitic transformation temperature of TiNiHf alloy 被引量:3
19
作者 谭昌龙 蔡伟 田晓华 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第11期2718-2723,共6页
In this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the pla... In this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure. 展开更多
关键词 DFT TiNiHf electronic structure martensitic transformation temperature
下载PDF
Microstructural evolution and tensile properties of low-carbon steel with martensitic microstructure during warm deforming and annealing 被引量:4
20
作者 Yuwei Gao Tianfu Jing +6 位作者 Guiying Qiao Jinku Yu Tiansheng Wang Qun Li Xinyu Song Shuqiang Wang Hong Gao 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期245-249,共5页
For preparing large-scale nano-grained and ultrafine-grained steel sheets by warm rolling and annealing, the effects of deforming temperature on both the flow stress and the microstructure evolution of 09MnNiD steel w... For preparing large-scale nano-grained and ultrafine-grained steel sheets by warm rolling and annealing, the effects of deforming temperature on both the flow stress and the microstructure evolution of 09MnNiD steel with lath martensitic microstructure were studied by warm-compression test and transmission electron microscopy (TEM) observation. Thereafter, the steel with the lath martensitic structure was multi-pass warm-rolled and then annealed. TEM results indicate that nano-grained and ultrafine-grained steel sheets are formed by warm rolling at 400℃ and annealing at 400-600℃. In comparison with the as-warm-rolled specimen, the tensile strength at room temperature changes a little when the rolled samples are annealed below 450℃, and the tensile strength is greatly lowered as the annealing temperature increases to above 550℃. 展开更多
关键词 warm deformation martensitE flow stress NANOMATERIALS mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部