Chronic stress can induce hippocampus injury such as neuron loss and dendrite atrophy,but its mechanism and molecular basis remain unclear up to now.To understand the molecular mechanism on protein level and find the ...Chronic stress can induce hippocampus injury such as neuron loss and dendrite atrophy,but its mechanism and molecular basis remain unclear up to now.To understand the molecular mechanism on protein level and find the crucial proteins which correlated with chronic展开更多
To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel...In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.展开更多
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static fini...Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static finite element stress analysis of the PIP riser system. The finite element (FE) model of the PIP riser system is built via software AutoPIPE 6.1. According to the specialties of a variety of components in the PIP riser system, different elements are used so as to model the system accurately. Allowing for the complication in modeling the effects of seabed restraint, a technique based on the bilinear spring concept is developed to calculate the soil properties. Then, based on a pipeline project, the entire procedure of stress analysis is discussed in detail, including creation of an FE model, processing of input data and analysis of results. A wide range of loading schemes is investigated to ascertain that the stresses remain within the acceptable range of the pipe material strength. Finally, the effects of the location of flanges, the thermal expansion of submarine pipelines and the seabed restraint on stress distribution in the riser and expansion loop are studied, which are valuable for pipeline designers.展开更多
The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic const...The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.展开更多
This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,...This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,but the material is of constant Poisson's ratio.A gradient parameter n is chosen between 0 and 1.0.When n = 0,the disc becomes a homogeneous isotropic material.Tangential and radial stress distributions and displacements on the disc are investigated for various gradient parameters n by means of the diverse elasticity modulus and density by using analytical and numerical solutions.Finally,a homogenous tangential stress distribution and the lowest radial stresses along the radius of a rotating disc are approximately obtained for the gradient parameter n = 1.0 compared with the homogeneous,isotropic case n = 0.This means that a disc made of FGMs has the capability of higher angular rotations compared with the homogeneous isotropic disc.展开更多
This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material ...This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.展开更多
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the gener...By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.展开更多
A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the disco...A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement on the interfaces are depicted by three shape functions, which are formulated according to solutions satisfying three equilibrium equations, By using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated plates with two different damage models are derived. Then, considering a simply supported laminated plate with damage, an analytical solution is presented using finite difference method to obtain the inter-laminar stresses.展开更多
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load...Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.展开更多
Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress...Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.展开更多
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ...Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.展开更多
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she...In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.展开更多
This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric laye...This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.展开更多
Two-dimensional stress wares in n general incompressible elastic solid are investigated. First, baxic equations for simple wares and shock waves are presented for a general strain energy junction. Then the characteris...Two-dimensional stress wares in n general incompressible elastic solid are investigated. First, baxic equations for simple wares and shock waves are presented for a general strain energy junction. Then the characteristic ware speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock wares. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation, the oblique reflection problem of a plane shock is not solvable in general.展开更多
The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomn...The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomness of loading and the theory of fatigue damage accumulation (TOFDA) are considered. The probabilistic analysis of local stress, local strain and fatigue life are constructed based on the first-order Taylor's series expansions. Through this method proposed fatigue reliability analysis can be accomplished.展开更多
Catalase is an important antioxidant protein that can protect organisms against various forms of oxidative damage by eliminating hydrogen peroxide. In this study, the catalase c DNA of Paphia textile(Pt CAT) was clo...Catalase is an important antioxidant protein that can protect organisms against various forms of oxidative damage by eliminating hydrogen peroxide. In this study, the catalase c DNA of Paphia textile(Pt CAT) was cloned using RTPCR and rapid amplification of c DNA ends(RACE). Pt CAT is 1 921 bp long and consists of a 5′-UTR of 50 bp, a 3′-UTR of 349 bp, and an ORF of 1 542 bp that encodes 513 amino acids with a molecular weight of 58.4 k D and an estimated isoelectric point of 8.2. Sequence alignment indicated that Pt CAT contained a highly conserved catalytic signature motif(^(61)FNRERIPERVVHAKGAG^(77)), a proximal heme-ligand signature sequence(^(352)RLFSYSDP^(359)), and three catalytic amino acid residues(H^(72), N^(145), and Y^(356)). Pt CAT also contains two putative N-glycosylation sites(^(34)NKT^(36) and ^(437)NFT^(439)) and a peroxisome-targeting signal(^(511)AQL^(513)). Furthermore, Pt CAT shares 53%–88% identity and 29%–89% similarity with other catalase amino acid sequences. Pt CAT m RNA was present in all tested organs, including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, but its expression was highest in the digestive gland. High-temperature-induced stress produced two expression patterns of Pt CAT m RNA: first, an initial up-regulation followed by a down-regulation in the heart, digestive gland, and gonad and, second, consistent down-regulation in all other organs. These results demonstrate that Pt CAT is a typical member of the catalase family and might be involved in the responses to harmful environmental factors.展开更多
DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was report...DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in展开更多
The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total wei...The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.展开更多
文摘Chronic stress can induce hippocampus injury such as neuron loss and dendrite atrophy,but its mechanism and molecular basis remain unclear up to now.To understand the molecular mechanism on protein level and find the crucial proteins which correlated with chronic
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
基金Project(12072376)supported by the National Natural Science Foundation of ChinaPoject(10533220215858)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst.
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
文摘Owing to the complexity of the pipe-in-pipe (PIP) riser system in structure, load and restraint, many problems arise in the structural analysis of the system. This paper presents a new method for nonlinear static finite element stress analysis of the PIP riser system. The finite element (FE) model of the PIP riser system is built via software AutoPIPE 6.1. According to the specialties of a variety of components in the PIP riser system, different elements are used so as to model the system accurately. Allowing for the complication in modeling the effects of seabed restraint, a technique based on the bilinear spring concept is developed to calculate the soil properties. Then, based on a pipeline project, the entire procedure of stress analysis is discussed in detail, including creation of an FE model, processing of input data and analysis of results. A wide range of loading schemes is investigated to ascertain that the stresses remain within the acceptable range of the pipe material strength. Finally, the effects of the location of flanges, the thermal expansion of submarine pipelines and the seabed restraint on stress distribution in the riser and expansion loop are studied, which are valuable for pipeline designers.
文摘The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.
基金Pamukkale University Scientific Research Council supporting this study under Project Contract No.2008FBE006 and 2010FBE096
文摘This study deals with stress analysis of annular rotating discs made of functionally graded materials(FGMs).Elasticity modulus and density of the discs are assumed to vary radially according to a power law function,but the material is of constant Poisson's ratio.A gradient parameter n is chosen between 0 and 1.0.When n = 0,the disc becomes a homogeneous isotropic material.Tangential and radial stress distributions and displacements on the disc are investigated for various gradient parameters n by means of the diverse elasticity modulus and density by using analytical and numerical solutions.Finally,a homogenous tangential stress distribution and the lowest radial stresses along the radius of a rotating disc are approximately obtained for the gradient parameter n = 1.0 compared with the homogeneous,isotropic case n = 0.This means that a disc made of FGMs has the capability of higher angular rotations compared with the homogeneous isotropic disc.
文摘This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (10572049)Hunan Provincial Natural Science Foundation of China (07JJ3009)National 985 Special Foundation of China
文摘By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
基金the National Natural Science Foundation of China(No.10572049).
文摘A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement on the interfaces are depicted by three shape functions, which are formulated according to solutions satisfying three equilibrium equations, By using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated plates with two different damage models are derived. Then, considering a simply supported laminated plate with damage, an analytical solution is presented using finite difference method to obtain the inter-laminar stresses.
基金financially supported by Offshore Engineering Equipment Scientific Research Project--Topic on Subsea Production System DesignKey Equipment Research & Development from Ministry of Industry and Information Technology of the People's Republic of China E-0813C003
文摘Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.
文摘Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.
基金Project supported by Qing Lan Project of Jiangsu, China
文摘Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan for supporting this work (No. 891238/11)。
文摘In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.
基金supported by the National Natural Science Foundation of China (11172138, 10727201)
文摘This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.
文摘Two-dimensional stress wares in n general incompressible elastic solid are investigated. First, baxic equations for simple wares and shock waves are presented for a general strain energy junction. Then the characteristic ware speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock wares. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation, the oblique reflection problem of a plane shock is not solvable in general.
文摘The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analysis. The randomness of loading and the theory of fatigue damage accumulation (TOFDA) are considered. The probabilistic analysis of local stress, local strain and fatigue life are constructed based on the first-order Taylor's series expansions. Through this method proposed fatigue reliability analysis can be accomplished.
基金The National Natural Science Foundation of China under contract No.31172397the New Century Excellent Talents of Fujian Province University under contract No.JA14167the Open Research Fund Program of Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment under contract No.Z814041
文摘Catalase is an important antioxidant protein that can protect organisms against various forms of oxidative damage by eliminating hydrogen peroxide. In this study, the catalase c DNA of Paphia textile(Pt CAT) was cloned using RTPCR and rapid amplification of c DNA ends(RACE). Pt CAT is 1 921 bp long and consists of a 5′-UTR of 50 bp, a 3′-UTR of 349 bp, and an ORF of 1 542 bp that encodes 513 amino acids with a molecular weight of 58.4 k D and an estimated isoelectric point of 8.2. Sequence alignment indicated that Pt CAT contained a highly conserved catalytic signature motif(^(61)FNRERIPERVVHAKGAG^(77)), a proximal heme-ligand signature sequence(^(352)RLFSYSDP^(359)), and three catalytic amino acid residues(H^(72), N^(145), and Y^(356)). Pt CAT also contains two putative N-glycosylation sites(^(34)NKT^(36) and ^(437)NFT^(439)) and a peroxisome-targeting signal(^(511)AQL^(513)). Furthermore, Pt CAT shares 53%–88% identity and 29%–89% similarity with other catalase amino acid sequences. Pt CAT m RNA was present in all tested organs, including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, but its expression was highest in the digestive gland. High-temperature-induced stress produced two expression patterns of Pt CAT m RNA: first, an initial up-regulation followed by a down-regulation in the heart, digestive gland, and gonad and, second, consistent down-regulation in all other organs. These results demonstrate that Pt CAT is a typical member of the catalase family and might be involved in the responses to harmful environmental factors.
文摘DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in
基金The financial support of the Aluminium Research Center(REGAL)is greatly appreciated.
文摘The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.