Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.T...For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.These stress fields depend on the inclusions’size,shape,and distribution and will respond instantly to the evolving microstructure.This study develops a phase-field model concerningmodulus heterogeneity.The effect of modulus heterogeneity on the growth process and equilibrium state of theαplate in Ti-6Al-4V during precipitation is evaluated.Theαprecipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic strain and interfacial energy.The calculated orientation of the habit plane using the homogeneous modulus ofαphase shows the smallest deviation fromthat of the habit plane observed in the experiment,compared to the case where the homogeneous modulus ofβphase is adopted.In addition,the equilibrium volume ofαphase within the systemusing homogeneousβmodulus exhibits the largest dependency on the applied stresses.The stress fields across theα/βinterface are further calculated under the assumption of modulus heterogeneity and compared to those using homogeneous modulus of eitherαorβphase.This study provides an essential theoretical basis for developing mechanics models concerning systems with heterogeneous structures.展开更多
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ...On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.展开更多
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a ...A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.展开更多
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ...Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.展开更多
Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the ext...Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the extraction effect.In hydraulic fracturing,when the artificial fracture approaches the natural fracture,the natural fracture would be influenced by both the original in-situ stress field and the hydraulic fracturing-induced stress field.In this paper,the hydraulic fracturing-induced stress field is calculated based on the relative position of hydraulic fracture and natural fracture,the original in-situ stress,the net pressure inside the hydraulic fracture and the pore pressure of the formation.Furthermore,the stability model of the natural fracture is established by combining the Mohr-Coulomb rupture criterion,and extensive parametric studies are conducted to explore the impact of each parameter on the stability of the natural fracture.The validity of the proposed model is verified by comparing with the reservoir characteristics and fracturing process of the X-well 150e155 formation in the Songliao Basin.It is found that the stress field induced by the hydraulic fracture inhibits the activation of the natural fracture after the artificial fracture crossed the natural fracture.Therefore,for similar reservoirs as X-well 150e155,it is suggested to connect natural fractures with hydraulic fractures first and then activate natural fractures which can effectively utilize the natural fractures and form a complex fracture network.展开更多
Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has alw...Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%.展开更多
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture...Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.展开更多
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1...In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.展开更多
Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and ...Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions.However,the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging,respectively,resulting in irreversible damage to the morphology,component,and phase of stacked materials.Herein,the viscoelastic polymer polyvinyl butyral(PVB)material is designed onto the surface of perovskite films to form flexible interface encapsulation.After PVB interface encapsulation,the surface modulus of perovskite films decreases by nearly 50%,and the interface stress range under the dynamic temperature field(−40 to 85°C)drops from−42.5 to 64.8 MPa to−14.8 to 5.0 MPa.Besides,PVB forms chemical interactions with FA+cations and Pb^(2+),and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film.As a result,the optimized device's efficiency increases from 22.21%to 23.11%.Additionally,after 1500 h of thermal treatment(85°C),1000 h of damp heat test(85°C&85%RH),and 250 cycles of thermal cycling test(−40 to 85°C),the devices maintain 92.6%,85.8%,and 96.1%of their initial efficiencies,respectively.展开更多
The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is nece...The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.展开更多
Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organ...Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organic disintegration processes, subaquatic gliding, compaction and settlement, and meteoritic impacts. In this work, the structural features in the siliceous beds of Jordan are attributed to an interplay of load and directed pressures, and mineralogical transformation processes (opal-A to opal-CT to quartz), governed by pH changes. Tectonic directed pressure was acting in an ESE-WSW direction and is common in the silicified limestone of Upper Cretaceous.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region...This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.展开更多
The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axi...The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axis strikes nearly north-south direction in the west part of Tibet plateau, ENE direction in North China. In Central China, its strikes show a ra- diated pattern, i.e., NNE in north part and NNW in south part. The detailed stress field parameters of nearly whole China are given and can be used in geodynamic stress field simulation and earthquake prediction.展开更多
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r...We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.展开更多
The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolu...The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.展开更多
In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred...In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金the financial support from the National Key Research and Development Program of China under Grant No.2022YFB3707803the Key Research Project of Zhejiang Laboratory under Grant No.2021PE0AC02+2 种基金the National Natural Science Foundation of China under Grant No.U2230102RS acknowledges the open research fund of Songshan Lake Materials Laboratory(2021SLABFK06)Guangdong Basic and Applied Basic Research Foundation(2024A1515011873).
文摘For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.These stress fields depend on the inclusions’size,shape,and distribution and will respond instantly to the evolving microstructure.This study develops a phase-field model concerningmodulus heterogeneity.The effect of modulus heterogeneity on the growth process and equilibrium state of theαplate in Ti-6Al-4V during precipitation is evaluated.Theαprecipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic strain and interfacial energy.The calculated orientation of the habit plane using the homogeneous modulus ofαphase shows the smallest deviation fromthat of the habit plane observed in the experiment,compared to the case where the homogeneous modulus ofβphase is adopted.In addition,the equilibrium volume ofαphase within the systemusing homogeneousβmodulus exhibits the largest dependency on the applied stresses.The stress fields across theα/βinterface are further calculated under the assumption of modulus heterogeneity and compared to those using homogeneous modulus of eitherαorβphase.This study provides an essential theoretical basis for developing mechanics models concerning systems with heterogeneous structures.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.42130312 and 4198810101)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK07)
文摘On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
基金Supported by the Scientific Research Start-Up Fund Project of Northeast Petroleum University(2019KQ67 and 2021KQ09)the Guiding Innovation Fund Project of Northeast Petroleum University(2021YDL-13)+1 种基金National Natural Science Foundation of China(52075090)Supported by the National Key R&D Program of China(2017YFD0601004).
文摘A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.
基金supported by the National Natural Science Foundation of China(Grant No.41574088)the Key Program of Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes(Grant No.ZDJ2019-16)。
文摘Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.
基金funded by the subprojects of the National Key R&D Program of China(2020YFA0710600)the NSFC(National Natural Science Foundation of China,grant 42374132).
文摘Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the extraction effect.In hydraulic fracturing,when the artificial fracture approaches the natural fracture,the natural fracture would be influenced by both the original in-situ stress field and the hydraulic fracturing-induced stress field.In this paper,the hydraulic fracturing-induced stress field is calculated based on the relative position of hydraulic fracture and natural fracture,the original in-situ stress,the net pressure inside the hydraulic fracture and the pore pressure of the formation.Furthermore,the stability model of the natural fracture is established by combining the Mohr-Coulomb rupture criterion,and extensive parametric studies are conducted to explore the impact of each parameter on the stability of the natural fracture.The validity of the proposed model is verified by comparing with the reservoir characteristics and fracturing process of the X-well 150e155 formation in the Songliao Basin.It is found that the stress field induced by the hydraulic fracture inhibits the activation of the natural fracture after the artificial fracture crossed the natural fracture.Therefore,for similar reservoirs as X-well 150e155,it is suggested to connect natural fractures with hydraulic fractures first and then activate natural fractures which can effectively utilize the natural fractures and form a complex fracture network.
基金funded by National Natural Science Foundation of China(52074300)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)+1 种基金China University of Mining and Technology(Beijing)fundamental scientific research funds—Doctoral students Top-notch Innovative Talents Fostering Funds(BBJ2023047)Guizhou Provincial Science and Technology Planning Project([2020]2Y030)。
文摘Under the dual influence of the mining disturbance of the previous working face and the advanced mining of the working face,the roadway is prone to large deformation,failure,and rockburst.Roadway stabilization has always significantly influenced deep mining safety.In this article we used the research background of the large deformation failure roadway of Fa-er Coal Mine in Guizhou Province of China to propose two control methods:bolt-cable-mesh+concrete blocks+directional energy-gathering blasting(BCM-CBDE method)and 1st Generation-Negative Poisson’s Ratio(1G NPR)cable+directional energy-gathering blasting+dynamic pressure stage support(πgirder+single hydraulic prop+retractable U steel)(NPR-DEDP method).Meantime,we compared the validity of the large deformation failure control method in a deep gob-side roadway based on theoretical analysis,numerical simulations,and field experiments.The results show that directional energy-gathering blasting can weaken the pressure acting on the concrete blocks.However,the vertical stress of the surrounding rock of the roadway is still concentrated in the entity coal side and the concrete blocks,showing a’bimodal’distribution.BCM-CBDE method cannot effectively control the stability of the roadway.NPR-DEDP method removed the concrete blocks.It shows using the 1G NPR cable with periodic slipping-sticking characteristics can adapt to repeated mining disturbances.The peak value of the vertical stress of the roadway is reduced and transferred to the deep part of the surrounding rock mass,which promotes the collapse of the gangue in the goaf and fills the goaf.The pressure of the roadway roof is reduced,and the gob-side roadway is fundamentally protected.Meantime,the dynamic pressure stage support method withπgirder+single hydraulic prop+retractable U steel as the core effectively protects the roadway from dynamic pressure impact when the main roof is periodically broken.After the on-site implementation of NPR-DEDP method,the deformation of the roadway is reduced by more than 45%,and the deformation rate is reduced by more than 50%.
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
文摘Inter-crystalline pores, cavities, and fractures created from diagenetic shrinkage of dolomite are inter-connected each other, forming fine oil- and gas-bearing reservoirs. It is hard to predict these complex fracture-cavity reservoirs because of their random distribution, different growth timing, and so on. Taking the lacustrine dolomite fracture-pore reservoir in the Lower Cretaceous Xiagou Formation in the Qingxi oilfield within the Jiuquan basin as an example, we put forward a comprehensive geophysical method to predict carbonate fractures.
基金supported by the National Natural Science Foundation of China(Nos.42074053 and 42374079)the Fundamental Research Funds from the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B30 and JY2022Z02).
文摘In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.
基金the National Natural Science Foundation of China(U21A20172,21975028)the China Postdoctoral Science Foundation under Grant Number 2023 M740167.
文摘Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions.However,the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging,respectively,resulting in irreversible damage to the morphology,component,and phase of stacked materials.Herein,the viscoelastic polymer polyvinyl butyral(PVB)material is designed onto the surface of perovskite films to form flexible interface encapsulation.After PVB interface encapsulation,the surface modulus of perovskite films decreases by nearly 50%,and the interface stress range under the dynamic temperature field(−40 to 85°C)drops from−42.5 to 64.8 MPa to−14.8 to 5.0 MPa.Besides,PVB forms chemical interactions with FA+cations and Pb^(2+),and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film.As a result,the optimized device's efficiency increases from 22.21%to 23.11%.Additionally,after 1500 h of thermal treatment(85°C),1000 h of damp heat test(85°C&85%RH),and 250 cycles of thermal cycling test(−40 to 85°C),the devices maintain 92.6%,85.8%,and 96.1%of their initial efficiencies,respectively.
基金Project supported by the National Natural Science Foundation of China (Nos. 52075070 and12302254)the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents (No. 2021RD16)the Liaoning Revitalization Talents Program (No. XLYC2002108)。
文摘The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.
文摘Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organic disintegration processes, subaquatic gliding, compaction and settlement, and meteoritic impacts. In this work, the structural features in the siliceous beds of Jordan are attributed to an interplay of load and directed pressures, and mineralogical transformation processes (opal-A to opal-CT to quartz), governed by pH changes. Tectonic directed pressure was acting in an ESE-WSW direction and is common in the silicified limestone of Upper Cretaceous.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
基金the auspice of National Key Basic Project(973)(granted number 2008CB425702)National Science and Technology Project(granted Number SinoProbe-08)China Geological Survey project(granted number1212010670104)
文摘This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.
基金supported by the National Natural Science Foundation of China (40874022)Public Utility Research Project (200808053)973 program (2008CB425703)
文摘The contemporary tectonic stress field in China is obtained on the basis of Chinese stress field database and Harvard CMT catalogue. Result of the inverted tectonic stresses shows that the maximum principal stress axis strikes nearly north-south direction in the west part of Tibet plateau, ENE direction in North China. In Central China, its strikes show a ra- diated pattern, i.e., NNE in north part and NNW in south part. The detailed stress field parameters of nearly whole China are given and can be used in geodynamic stress field simulation and earthquake prediction.
基金supported by the National Natural Science Foundations of China (No.41204040)China National Special Fund for Earthquake Scientific Research in Public Interest (Nos.201008001, 201308011)Most figures were made using GMT (Wessel et al.2013)
文摘We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.
基金This paper is supported by the National Natural Science Foundation of China (Grant Nos. 40572063 and 40272051);the Fostering Plan Fund for Trans-Century Excellent Talents and the Project 111 (No. B07011).
文摘The Shangzhuang altered-rock type gold ore deposit is located in the middle segment of and controlled by the Wang'ershan fault zone in the northwestern part of the Jiaodong gold province, China. The deformation evolution, the structure of strain and stress fields and its ore-controlling effect in the Shangzhuang deposit are discussed in this paper. It is revealed that the deformation evolution has mainly undergone four phases: the early ductile deformation, the second NE-striking horizontal simple shear, the third NE-striking compression-shear and the final NW-striking compression. The mineralization happened during the third stage in which the maximum principal stress gradually transited from NE to NW. The 3-D numerical simulations of the stress field show that, on the condition that the maximum principal stress is NE-striking, the fracture development in the fault zone is favored, while when the maximum principal stress is NW-striking, the fault zone is relatively extensional and it is suitable for the influx and emplacement of ore-forming fluids. The compression-shear strain field during the mineralization is characterized by the λ-type structure, the positive flower structure, etc. Orebodies are mostly equidistantly located in the dilatational spaces, which are distributed in the integral compressional circumstances. And the dilatational spaces are developed where the fault attitude changes or shear joint systems develop. In the overall compression-shear stress field, the strain field bears self-similarity at multiple scales, including the orebody, ore deposit and orefield. The selfsimilarity of the structure comprises the subequidistant distribution of fractures at the same scale and the similar shape of the fractures at various scales. Yet, due to the special geological structure, the orebodies are mostly located in the hanging wall in the Shangzhuang deposit, which is different from most deposits in the Jiaodong gold province. Analyses of the ore-controlling stress and strain fields in the deposit provide an important basis for deposit seeking.
基金The National Key Basic Research Program under the Project "Mechanism and Prediction of Continental Strong Earthquake"(G1998040700) and Joint Seismological Science Foundation of China (100108).
文摘In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.