A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scale...A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11002054)
文摘A boundary-type meshless method called the scaled boundary node method (SBNM) is developed to directly evaluate mixed mode stress intensity factors (SIFs) without extra post-processing. The SBNM combines the scaled boundary equations with the moving Kriging (MK) interpolation to retain the dimensionality advantage of the former and the meshless attribute of the latter. As a result, the SBNM requires only a set of scattered nodes on the boundary, and the displacement field is approximated by using the MK interpolation technique, which possesses the 5 function property. This makes the developed method efficient and straightforward in imposing the essential boundary conditions, and no special treatment techniques are required. Besides, the SBNM works by weakening the governing differential equations in the circumferential direction and then solving the weakened equations analytically in the radial direction. Therefore, the SBNM permits an accurate representation of the singularities in the radial direction when the scaling center is located at the crack tip. Numerical examples using the SBNM for computing the SIFs are presented. Good agreements with available results in the literature are obtained.