期刊文献+
共找到615篇文章
< 1 2 31 >
每页显示 20 50 100
Numerical Study on 3D MHD Darcy-Forchheimer Flow Caused by Gyrotactic Microorganisms of the Bio-Convective Casson Nanofluid across a Stretched Sheet
1
作者 S.H.Elhag 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期377-395,共19页
A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids.Since there are significant gaps in the illumination of existing methods for enhancing heat transmis... A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids.Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials,a thorough investigation of the previously outlined models is essential.The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely.The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet.The inclusion of the nanoparticles is a result of their peculiar properties,such as remarkable thermal conductivity,which are important in heat exchangers and cutting-edge nanotechnology.The gyrotactic microorganisms must be included to prevent the potential deposition of minute particles.The proposed flow dynamics model consists of an evolving nonlinear system of PDEs,which is subsequently reduced to a system of dimensionless ODEs utilizing similarity approximations.MATLAB software was utilized to create an effective code for the Runge-Kutta technique using a shooting tool to acquire numerical results.This method is extensively used to solve these issues since it is accurate to fourth order,efficient,and affordable.The influence of submerged factors on the velocity,temperature,concentration,and density of motile microorganisms is shown in the figures.Additionally,tables and bar charts are used to illustrate the physical characteristics of the Nusselt and Sherwood numbers for the densities of both nanoparticles and motile microorganisms.The dimensionless velocities are observed declining when the casson,magnetic,porosity,and forchheimer parameters grow,whereas the dimensionless temperature and concentration rise as the thermophoresis parameter rises.This work provides insights into practical applications such nanofluidic,energy conservation,friction reduction,and power generation.Furthermore,in a concentration field,the Brownian and thermophoresis parameters exhibit very distinct behaviours.However,the work makes a significant point that the flow of a Casson fluid including nanoparticles can be regulated by appropriately modifying the Casson parameter,thermophoresis parameter,and Brownian motion parameter. 展开更多
关键词 Casson fluid 3D stretching sheet convective conditions Darcy-Forchheimer Runge-Kutta-Fehlberg technique gyrotactic microorganisms
下载PDF
STUDIES ON ENHANCED CONDUCTIVITY OF STRETCHED CONDUCTING POLYMERS 被引量:1
2
作者 万梅香 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1995年第1期1-6,共6页
A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced... A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might bedue to increasing of the interchain conductivity between chains along the elongation direction afterdrawing processes if the conductivity on chain is assumed much larger than that of the interchainconductivity between chains. According to this model, it is expected that the temperaturedependence of conductivity measured by four-probe method for stretched conducting polymers iscontrolled by a variation of the interchain conductivity between chains with temperature, whichcan be used to explain that a metallic temperature dependence of conductivity for stretchedconducting polymers is not observed although the conductivity along the elongation direction isenhanced by two or three orders of magnitude. 展开更多
关键词 stretched conducting film POLYANILINE Conducting polymers
下载PDF
Investigation of factors affecting vertical sag of stretched wire
3
作者 Jian-Dong Yuan Jun-Xia Wu +7 位作者 Bin Zhang Yuan He Jun-Hui Zhang Wen-Jun Chen Shao-Ming Wang Guo-Zhen Sun Xu-Dong Zhang Li-Song Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期90-100,共11页
To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or ... To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material. 展开更多
关键词 stretched wire Alignment Vertical sag CATENARY Hyperbolic cosine Linear density Earth rotation
下载PDF
<i>In Situ</i>Observation and Measurement of Actin Stress Fiber Deformation in Stretched Osteoblast like Cell
4
作者 Katsuya Sato Kenta Nunobiki +2 位作者 Shoichiro Fujisawa Tasuku Nakahara Kazuyuki Minami 《Advances in Bioscience and Biotechnology》 2017年第11期421-433,共13页
It is believed that mechanical stimuli, such as stretching of the extracellular matrix, are transmitted into cells via focal adhesion complexes and the actin cytoskeleton. Transmission dynamics of strain from the extr... It is believed that mechanical stimuli, such as stretching of the extracellular matrix, are transmitted into cells via focal adhesion complexes and the actin cytoskeleton. Transmission dynamics of strain from the extracellular matrix into intracellular organelles is crucial to clarify the mechanosensing mechanisms of cells. In this study, we observed deformation behavior of actin stress fibers under uniaxial stretch using an originally developed cell-stretching microelectromechanical system (MEMS) device. It was difficult to conduct in situ observation of cells under stretch using conventional cell stretching devices, because motion artifacts such as rigid displacement during stretch application were not negligible. Our novel cell-stretching MEMS device suppressed rigid displacement while stretching, and we succeeded in obtaining time-lapse images of stretched cells. Uniaxial strain with a 10% magnitude and strain rate of 0.5%/sec was applied to cells. Deformation behaviors of the cells and actin stress fibers were recorded using a confocal laser scanning microscope. In time-lapse images of stretched cells, strains along each stress fiber were measured manually. As a result, in cells with a relatively homogeneous stress fiber structure oriented in one direction, distribution of the axial strain on stress fibers generally corresponded to deformation of the stretching sheet on which the cells had adhered. However, in cells with a heterogeneous stress fiber structure oriented in several directions, we found that the strain distribution along stress fibers was not homogeneous. In regions around the cell nucleus, there was a more complicated strain distribution compared with other regions. Our results suggest the cell nucleus with a stiff mechanical resistance yields such a complicated strain distribution in stress fibers. 展开更多
关键词 ACTIN CYTOSKELETON Stretching Stimuli OSTEOBLAST CELL Biomechanics MEMS
下载PDF
Response of Stretched Cylindrical Diffusion Flame to Sinusoidal Oscillation of Air Flow Velocity
5
作者 Yosuke Suenaga Hideki Yanaoka +1 位作者 Mamoru Kikuchi Shun Sasaki 《Journal of Mechanics Engineering and Automation》 2017年第6期321-326,共6页
An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fue... An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fuel was methane diluted with nitrogen, and the oxidizer air. The oscillation frequency was varied from 5 to 250 Hz. The results are summarized as follows. Though the fluctuation amplitude of the air stream velocity gradient was constant with respect to the frequency, the amplitude of the fuel stream increased. The fluctuation amplitude of the flame radius changed quasi-steadily from 5 to 25 Hz, and decreased with increasing frequency in the frequency range greater than 50 Hz. The flame luminosity did not respond quasi-steadily at 5 Hz, and the oscillation amplitude of flame luminosity was less than that of a steady flame, over the same velocity fluctuation range. The oscillation amplitude of luminosity peaked at 50 Hz, and was greater than that of a steady flame. It is considered that this complex change in flame luminosity with respect to frequency was closely related to the phase difference in the respective time variations in the ratio of flame thickness to radius, the velocity gradients of the air and fuel streams, and the magnitude of these values, with the ratio of flame thickness to radius related to the flame curvature effect, the velocity gradient of the air stream correlated to the flame stretch effect, and the velocity gradient of the fuel stream impacting the fuel transportation. 展开更多
关键词 COMBUSTION diffusion flame velocity oscillation flame stretch flame curvature
下载PDF
Impact of Melting Heat Transfer and Variable Characteristics on an MHD Non-Newtonian Shear-Thinning Fluid Flow with Gyrotactic Microorganisms over a Nonlinear Stretched Surface
6
作者 Muhammad Ramzan Naila Shaheen 《Journal of Applied Mathematics and Physics》 2023年第8期2461-2471,共11页
The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the... The objective of this work is to examine how temperature-dependent thermal conductivity and concentration-dependent molecular diffusion affect Reiner-Philippoff nanofluid flow past a nonlinear stretching sheet. At the interface of the elongated surface zero-mass flux and melting heat condition are incorporated. The formulated mathematical problem is simplified by implementing suitable similarity transformations. For the numerical solution bvp4c is utilized. The parameters emerging in the model are discussed versus allied profiles through graphical illustrations. It is perceived that the velocity of the fluid decays on incrementing the Bingham number. The gyrotactic microorganism profile declines on amplifying the Peclet number. The validation of the proposed model is also added to this study. . 展开更多
关键词 Reiner-Philippoff Nanofluid Nonlinear Stretching Sheet Melting Heat Transfer Gyrotactic Micro-Organisms
下载PDF
Recovery of Uniaxially Stretched Amorphous Poly(ethylene terephthalate) Film
7
作者 Nan Jian SUN and De Yan SHEN(Polymer Physics Laboratory, Institute of Chemistry,Chinese Academy of Sciences, Beding, 100080.) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第10期965-966,共2页
Recovery behavior of uniaxially stretched amorphous poly(ethylene terephthalate) (a-PET) film near glass transition temperature (T-g) was studied. A strain recovery curve showed that the recovery was made up of two co... Recovery behavior of uniaxially stretched amorphous poly(ethylene terephthalate) (a-PET) film near glass transition temperature (T-g) was studied. A strain recovery curve showed that the recovery was made up of two components each with different relaxation time. 展开更多
关键词 polyethylene terephthalate uniaxial stretching RELAXATION RECOVERY
全文增补中
High-accuracy stretched-wire measurement system for cryogenic permanent magnet undulator(CPMU)in High Energy Photon Source(HEPS) 被引量:1
8
作者 Zhiqiang Li Wan Chen +7 位作者 Huihua Lu Lingling Gong Shuchen Sun Lei Zhang Yufeng Yang Xiaoyu Li Shutao Zhao Xiangzhen Zhang 《Radiation Detection Technology and Methods》 CSCD 2020年第4期492-496,共5页
A new stretched-wire system is built for a cryogenic permanent magnet undulator in High Energy Photon Source Testing Facility.The system has two functions:integral field measurement and magnet gap measurement.Integral... A new stretched-wire system is built for a cryogenic permanent magnet undulator in High Energy Photon Source Testing Facility.The system has two functions:integral field measurement and magnet gap measurement.Integral field measurement and gap measurement are important for evaluation and optimization of the magnetic performance of the undulator in cryogenic-vacuum environment.Two high-precision,high-load motion stages are used for accurate positioning.A special fix structure of stretched wire is adopted for vacuum environment.To reduce the deflection of the 3-meter-long wire,constant tension is maintained along the wire.The measurement repeatability of field integral and magnetic gap is the key performance which depends on the stability of wire and suppression of the electric noise.Strategy of improving the measurement accuracy and stability is presented. 展开更多
关键词 Magnetic measurement system Cryogenic permanent magnet undulator stretched wire Integral field measurement Gap measurement
原文传递
The (lg_(9/2), 1g/9/2) stretched state in Co
9
作者 袁坚 孙祖训 +3 位作者 卢明 陆道如 陈泉 张培华 《Science China Mathematics》 SCIE 1996年第12期1323-1331,共9页
Spectra and angular distributions strongly populated by 56Fe(a, d)58Co reaction at HI-13 Tandem accelerator using AE-E telescope system and Q3D magnetic spectrometer have been measured and analyzed with microscopic DW... Spectra and angular distributions strongly populated by 56Fe(a, d)58Co reaction at HI-13 Tandem accelerator using AE-E telescope system and Q3D magnetic spectrometer have been measured and analyzed with microscopic DWBA. The 6.79MeV state of 58Co was identified as stretched state with the ) configuration which has the highest coupled angular momentum 9+ so far observed. Evidence for 6.4MeV high excitation level on the anomalous enhancement in the cross section, with p-n pair coupled to the minimum allowed angular momentum was discussed. The level was first assigned to an unnatural parity state with F=l+ in 58Co. 展开更多
关键词 Q3D magnetic SPECTROMETER ANGULAR distribution nuciear stretched STATE NUCLEAR reaction.
原文传递
The Stretched Field Method for Approximating Gross Determiners Ⅱ
10
作者 ZHANG Jie(The First Institute of Oceanolagy, SOA, Qingdao 266003)FANG Guohong(Institute of Oceanology, Academia Sinica, Qingdao 266071) 《Systems Science and Systems Engineering》 CSCD 1996年第4期473-476,478-479,共7页
The paper is the continuation of the previous article in which the stretched field method on is developed to solve the equations for grossly determiners. The first degree result is the same as the Lundgren’s small pa... The paper is the continuation of the previous article in which the stretched field method on is developed to solve the equations for grossly determiners. The first degree result is the same as the Lundgren’s small parameter expansion 展开更多
关键词 The stretched Field Method for Approximating Gross Determiners
原文传递
Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels 被引量:7
11
作者 Cun-jian MIAO Jin-yang ZHENG +4 位作者 Xiao-zhe GAO Ze HUANG A-bin GUO Du-yi YE Li MA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第1期31-37,共7页
Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an importa... Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases, and have such advantages as thin wall and light weight. Fatigue is an important concern in these pressure vessels, which are subjected to alternative loads. Even though several codes and standards have guidelines on these pressure vessels, there are no relevant design methods on fatigue failure. To understand the fatigue properties of ASS 1.4301 (equivalents include UNS $30400 and AISI 304) in solution-annealed (SA) and cold-stretched conditions (9% strain level) and the response of fatigue properties to cold stretching (CS), low-cycle fatigue (LCF) tests were performed at room temperature, with total strain amplitudes ranging from :~0.4% to "0.8%. Martensite transformations were measured during the tests. Comparisons on cyclic stress response, cyclic stress-strain behavior, and fatigue life were carried out between SA and CS materials. Results show that CS reduces the initial hardening stage, but prolongs the softening period in the cyclic stress response. Martensite transformation helps form a stable regime and subsequent secondary hardening. The stresses of monotonic and cyclic stress-strain curves are improved by CS, which leads to a lower plastic strain and a much higher elastic strain. The fatigue resistance of the CS material is better than that of the SA material, which is approximately 1 - 103 to 2 - 104 cycles. The S-N curve of the ASME standard for ASS is compared with the fatigue data and is justified to be suitable for the fatigue design of cold-stretched pressure vessels. However, considering the CS material has a better fatigue resistance, the S-N curve will be more conservative. The present study would be helpful in making full use of the advantages of CS to develop a new S-N curve for fatigue design of cold-stretched pressure vessels. 展开更多
关键词 Cold stretching (CS) Austenitic stainless steel (ASS) Pressure vessels Low-cycle fatigue (LCF) Cyclic stressresponse (CSR) Fatigue life S-N curve
原文传递
Partly Imidized Polyamic Acid and Its Uniaxial Stretched Polyimide Films 被引量:3
12
作者 MA peng-chang HOU Yong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第2期396-400,共5页
Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films. The be- haviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4'-oxydianiline(ODA) and 3,3',... Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films. The be- haviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4'-oxydianiline(ODA) and 3,3',4,4'-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated. The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid. Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD. The effect of catalyst on imidization possessed an order of triethylamine〉3-methylpyridine〉pyridine〉isoquinoline〉2-methylpyridine. The stretching of the films greatly re- duced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction. Compared to the film from polyamic acid, the partly imidized film had greater stretching ratio, so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus, but lower elonga- tion in the stretching direction. 展开更多
关键词 Poyimide FILM Partly imidized polyamic acid Uniaxial stretching
原文传递
Temperature Field for Improving Internal Quality of Stretched Round Billet 被引量:1
13
作者 QIU Ping XIAO Hong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第6期17-22,共6页
Based on the rigid-plastic theory, using a coupled thermomechanical model, the stretching process of a circular section billet is simulated by means of FEM software Deform-2D. Through the distribution of internal stre... Based on the rigid-plastic theory, using a coupled thermomechanical model, the stretching process of a circular section billet is simulated by means of FEM software Deform-2D. Through the distribution of internal stress fields of stretched round billet, it is found that the shear stress field is the main factor to induce Mannesmann's effect. The simulation results show that a reasonable distribution of the temperature field may improve the internal quality of the circular section billet in the stretching process. 展开更多
关键词 STRETCHING temperature field Mannesmann's effect SIMULATION
原文传递
Effect of Lorentz forces on forced-convection nanofluid flow over a stretched surface 被引量:3
14
作者 Mohsen Sheikholeslami M.T. Mustafa Davood Domiri Ganji 《Particuology》 SCIE EI CAS CSCD 2016年第3期108-113,共6页
Magnetic nanofiuid hydrothermal analysis over a plate is studied that includes consideration of thermal radiation. The Runge-Kutta (RK4) method is utilized to get solution of ODEs which are obtained from similarity ... Magnetic nanofiuid hydrothermal analysis over a plate is studied that includes consideration of thermal radiation. The Runge-Kutta (RK4) method is utilized to get solution of ODEs which are obtained from similarity solution. In considering the impacts of Brownian motion, we applied Koo-Kleinstreuer-Li cor- relation to simulate the properties of CuO-water. The influence is discussed of important parameters such as the temperature index, magnetic, radiation, and velocity ratio parameters and volume fraction of nanoparticle on hydrothermal behavior. Results illustrate that the coefficient of skin friction enhances with enhancing magnetic parameter while reduces with enhancing velocity ratio parameter. Also the Nusselt number was found to directly depend on the velocity ratio and temperature index parameters but has an inverse dependence on the magnetic and radiation parameters. 展开更多
关键词 Nanofluid Brownian motion Thermal radiation Magnetohydrodynamic Stretching sheet
原文传递
Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition
15
作者 B.C.Prasannakumara J.K.Madhukesh G.K.Ramesh 《Propulsion and Power Research》 SCIE 2023年第2期284-296,共13页
The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink,thermophoretic particle deposition,and bioconvection.The collec... The current work is being done to investigate the flow of nanofluids across a porous exponential stretching surface in the presence of a heat source/sink,thermophoretic particle deposition,and bioconvection.The collection of PDEs(partial differential equations)that represent the fluid moment is converted to a system of ODEs(ordinary differential equations)with the use of suitable similarity variables,and these equations are then numerically solved using Runge Kutta Fehlberg and the shooting approach.For different physical limitations,the numerical results are visually represented.The results show that increasing the porosity characteristics reduces velocity.The mass transfer decreases as the thermophoretic limitation increases.Increases in the porosity parameter reduce skin friction,increases in the solid volume fraction improve the rate of thermal distribution,and increases in the thermophoretic parameter increase the rate of mass transfer. 展开更多
关键词 Exponential stretching sheet NANOFLUID Heat source/sink Thermophoretic particle deposition Bio convection
原文传递
Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition
16
作者 Azad Hussain Saira Raiz +2 位作者 Ali Hassan Mohamed R.Ali Abdulkafi Mohammed Saeed 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期433-453,共21页
Heat transfer improves significantly when the working fluid has high thermal conductivity.Heat transfer can be found in fields such as food processing,solar through collectors,and drug delivery.Considering this notabl... Heat transfer improves significantly when the working fluid has high thermal conductivity.Heat transfer can be found in fields such as food processing,solar through collectors,and drug delivery.Considering this notable fact,this work is focused on investigating the bio-convection-enhanced heat transfer in the existence of convective boundary conditions in the flow of hybrid nanofluid across a stretching surface.Buongiorno fluid model with hybrid nanoparticles has been employed along the swimming microorganisms to investigate the mixture base working fluid.The developed nonlinear flow governing equations have been tackled numerically with the help of the bvp4c.The effects of relevant parameters on the flowdynamic have been portrayed in a graphical representation.The velocity profile decreases by raising the levels of buoyancy ratio and mixed convection in the range of 0.1<λ≤0.3.It has been discovered thatwhen bioconvection levels rise,motile microbemigration abruptly slows,which results in a decrease in fluid acceleration.The concentration of fluid flow declined for the Lewis number,but the opposite trend has been observed for the elastic parameter,thermophoresis parameter,and buoyancy ratio.With rising values of Brownian motion and thermophoretic diffusion,the surface drag and Nusselt number decrease significantly.Whereas,the opposite trend has been observed when the values of the thermal Biot number,Prandtl number and buoyancy ratio are enhanced.Additionally,data from this study have been validated by comparison with those that have previously been published,and an appropriate rate of agreement has been observed. 展开更多
关键词 Prandtl hybrid nanofluid mixed convection stretched sheet BIOCONVECTION motile microorganisms
下载PDF
Highly Thermoconductive,Strong Graphene‑Based Composite Films by Eliminating Nanosheets Wrinkles 被引量:2
17
作者 Guang Xiao Hao Li +2 位作者 Zhizhou Yu Haoting Niu Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期328-340,共13页
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros... Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices. 展开更多
关键词 GRAPHENE Aramid nanofiber Wrinkles elimination In-plane stretching Thermal conductivity
下载PDF
Chronic effects of stretching on range of motion with consideration of potential moderating variables:A systematic review with meta-analysis 被引量:1
18
作者 Andreas Konrad Shahab Alizadeh +7 位作者 Abdolhamid Daneshjoo Saman Hadjizadeh Anvar Andrew Graham Ali Zahiri Reza Goudini Chris Edwards Carina Scharf David George Behm 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期186-194,共9页
Background:It is well known that stretch training can induce prolonged increases in joint range of motion(ROM).However,to date more information is needed regarding which training variables might have greater influence... Background:It is well known that stretch training can induce prolonged increases in joint range of motion(ROM).However,to date more information is needed regarding which training variables might have greater influence on improvements in flexibility.Thus,the purpose of this metaanalysis was to investigate the effects of stretch training on ROM in healthy participants by considering potential moderating variables,such as stretching technique,intensity,duration,frequency,and muscles stretched,as well as sex-specific,age-specific,and/or trained state-specific adaptations to stretch training.Methods:We searched through PubMed,Scopus,Web of Science,and SportDiscus to find eligible studies and,finally,assessed the results from 77 studies and 186 effect sizes by applying a random-effect meta-analysis.Moreover,by applying a mixed-effect model,we performed the respective subgroup analyses.To find potential relationships between stretch duration or age and effect sizes,we performed a meta-regression.Results:We found a significant overall effect,indicating that stretch training can increase ROM with a moderate effect compared to the controls(effect size=-1.002;Z=-12.074;95%confidence interval:-1.165 to-0.840;p<0.001;I^(2)=74.97).Subgroup analysis showed a significant difference between the stretching techniques(p=0.01)indicating that proprioceptive neuromuscular facilitation and static stretching produced greater ROM than did ballistic/dynamic stretching.Moreover,there was a significant effect between the sexes(p=0.04),indicating that females showed higher gains in ROM compared to males.However,further moderating analysis showed no significant relation or difference.Conclusion:When the goal is to maximize ROM in the long term,proprioceptive neuromuscular facilitation or static stretching,rather than ballistic/dynamic stretching,should be applied.Something to consider in future research as well as sports practice is that neither volume,intensity,nor frequency of stretching were found to play a significant role in ROM yields. 展开更多
关键词 FLEXIBILITY Long-term stretching Stretch training
下载PDF
Circulation Background and Genesis Mechanism of a Cold Vortex over the Tibetan Plateau during Late April 2018
19
作者 Duming GAO Jiangyu MAO +1 位作者 Guoxiong WU Yimin LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1201-1216,共16页
A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates th... A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates the genesis mechanism of the cold TP vortex(TPV)by diagnosing reanalysis data and conducting numerical experiments.Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity(PV)forcing from the tropopause and diurnal thermodynamic impact from the surface.As a positive PV anomaly in the lower stratosphere moved towards the TP,the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward,forming isentropic-isplacement ascent and reducing static stability over the TP.The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site,resulting in ascending air in the free atmosphere.This,in conjunction with the descending air in the valley area during the night,produced air stretching just at the TPV genesis site.Because the surface cooling at night increased the surface static stability,the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity.Consequently,the cold TPV was generated over the valley at night. 展开更多
关键词 TROPOPAUSE PV forcing air column stretching static stability vertical vorticity
下载PDF
Revisiting the stretch-induced force deficit:A systematic review with multilevel meta-analysis of acute effects
20
作者 Konstantin Warneke Lars Hubertus Lohmann 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第6期805-819,共15页
Background:When recommending avoidance of static stretching prior to athletic performance,authors and practitioners commonly refer to available systematic reviews.However,effect sizes(ES)in previous reviews were extra... Background:When recommending avoidance of static stretching prior to athletic performance,authors and practitioners commonly refer to available systematic reviews.However,effect sizes(ES)in previous reviews were extracted in major part from studies lacking control conditions and/or prepost testing designs.Also,currently available reviews conducted calculations without accounting for multiple study outcomes,with ES:0.03 to 0.10,which would commonly be classified as trivial.Methods:Since new meta-analytical software and controlled research articles have appeared since 2013,we revisited the available literatures and performed a multilevel meta-analysis using robust variance estimation of controlled prepost trials to provide updated evidence.Furthermore,previous research described reduced electromyography activity—also attributable to fatiguing training routines—as being responsible for decreased subsequent performance.The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines.Results:Including 83 studies with more than 400 ES from 2012 participants,our results indicate a significant,small ES for a static stretch-induced maximal strength loss(ES=0.21,p=0.003),with high magnitude ES(ES=0.84,p=0.004)for stretching durations≥60 s per bout when compared to passive controls.When opposed to active controls,the maximal strength loss ranges between ES:0.17 to0.28,p<0.001 and 0.040 with mostly no to small heterogeneity.However,stretching did not negatively influence athletic performance in general(when compared to both passive and active controls);in fact,a positive effect on subsequent jumping performance(ES=0.15,p=0.006)was found in adults.Conclusion:Regarding strength testing of isolated muscles(e.g.,leg extensions or calf raises),our results confirm previous findings.Nevertheless,since no(or even positive)effects could be found for athletic performance,our results do not support previous recommendations to exclude static stretching from warm-up routines prior to,for example,jumping or sprinting. 展开更多
关键词 Static stretching Maximal strength Athletic performance Performance testing
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部