This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By in...This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.展开更多
Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microf...Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine...We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spec- troscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.展开更多
The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare sa...The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.展开更多
The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of...The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of the activated erbium-doped fiber are first employed together with the nonlinear Shro¨dinger equations to reveal the relation between the operational parameters and the output state of the passively mode-locked fiber laser.The numerical and experimental results demonstrate that the output state of the mode-locked laser varies with the polarization controlling and the pump power.The periodicity of the polarization controlling is observed.With given pump power,there exists a set of polarization controlling under which the ultra-short pulse can be generated.With given polarization controlling,the mode-locked state can be maintained generally except for some particular values of pump power.Three shapes of the output optical spectra from the fiber cavity can be identified when the pump power changes.The results in this paper provide a comprehensive insight into the operation of the nonlinear polarization rotation-based passively mode-locked fiber laser.展开更多
The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the in...The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.展开更多
We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses i...We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.展开更多
An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum i...An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.展开更多
We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a ...We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a spectral width of 9.7 nm and a repetition rate of 9.33 MHz. The emission wavelength is tunable along with the cavity length detuning in a wide range of 3 mm. The high detuning toleration is beneficial to achieve high temperature and vibration stability in all-fiber configuration lasers.展开更多
The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings cent...The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase...We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.展开更多
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar...A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.展开更多
We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.Th...We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.展开更多
In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on...In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition(PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-d B spectral width and pulse duration are measured to be 1.245 nm and317 ps, respectively.展开更多
We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching e...We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.展开更多
We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wav...We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of - 20 nm and from - 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance.展开更多
文摘This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304409 and 61705028)the Natural Science Foundation of Chongqing City,China(Grant Nos.csct2013jcyjA4004 and cstc2017jcyjA0893)+1 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500422)the Postgraduate Research Innovation Foundation of Chongqing City,China(Grant No.CYS17240)
文摘Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
基金Project supported by the Central University Special Fund for Basic Research and Operating Expenses,China(Grant No.GK201702005)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM6091)+1 种基金the National Natural Science Foundation of China(Grant No.61705183)the Fundamental Research Funds for the Central Universities(Grant No.2017TS011)
文摘We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spec- troscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.
基金Project supported by the Central University Special Fund Basic Research and Operating Expenses,China(Grant No.GK201702005)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM6091)+1 种基金the National Natural Science Foundation of China(Grant No.61705183)the Fundamental Research Funds for the Central Universities,China(Grant No.2017TS011)
文摘The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60972017,60978007,and 61177067)
文摘The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of the activated erbium-doped fiber are first employed together with the nonlinear Shro¨dinger equations to reveal the relation between the operational parameters and the output state of the passively mode-locked fiber laser.The numerical and experimental results demonstrate that the output state of the mode-locked laser varies with the polarization controlling and the pump power.The periodicity of the polarization controlling is observed.With given pump power,there exists a set of polarization controlling under which the ultra-short pulse can be generated.With given polarization controlling,the mode-locked state can be maintained generally except for some particular values of pump power.Three shapes of the output optical spectra from the fiber cavity can be identified when the pump power changes.The results in this paper provide a comprehensive insight into the operation of the nonlinear polarization rotation-based passively mode-locked fiber laser.
基金the financial support from Science and Technology Project of the Jilin Provincial Department of Education (Grant No. JJKH20231171KJ)。
文摘The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805274)the Major Program of the National Natural Science Foundation of China(Grant No.12034020)Research Foundation of Inner Mongolia University of China(Grant No.21200-5215108)。
文摘We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant Nos 2013M540288 and 2015M570290+2 种基金the Fundamental Research Funds for the Central Universities Grant under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61675188 and 61875052the Open Fund of Key Laboratory Pulse Power Laser Technology of China under Grant No SKL2016KF03
文摘We propose and demonstrate a synchronously pumped mode-locked Tm-doped fiber(TDF) laser without any extra mode-locking elements. Pumped by a 1.56 μm pulse fiber laser, the TDF laser generates 1.17 ps pulses with a spectral width of 9.7 nm and a repetition rate of 9.33 MHz. The emission wavelength is tunable along with the cavity length detuning in a wide range of 3 mm. The high detuning toleration is beneficial to achieve high temperature and vibration stability in all-fiber configuration lasers.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901NSAF Foundation of the National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant Nos 61308024 and 11174305
文摘The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
基金Project supported by the National Natural Science Foundation of China(Grant No.51905528)the Key Research Project of Bureau of Frontier Sciences and Education+1 种基金Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC008)the National Key Research and Development Project,China(Grant Nos.2019YFB2005600 and 2018YFB2003403)。
文摘We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
基金Project supported by the Initiative Research Program of State Key Laboratory of Precision Measurement Technology and Instruments,Chinathe National Natural Science Foundation of China(Grant No.51527901)
文摘A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.
基金the Ministry of Higher Education of Malaysia(MOHE)(Grant No.FRGS/1/2019/STG02/UPM/02/4).
文摘We propose and demonstrate a passively mode-locked erbium-doped fiber laser(EDFL)based on zinc-oxide/polydimethylsiloxane(ZnO/PDMS)saturable absorber(SA)that evanescently interacts with the light on a tapered fiber.The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device,with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively.These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient,compatible,and low-cost SA device for ultrafast laser applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)the Natural Science Fund of Guangdong ProvinceChina(Grant No.S2013010012235)
文摘In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition(PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-d B spectral width and pulse duration are measured to be 1.245 nm and317 ps, respectively.
基金Supported by the Fund from University of Malaya under Grant No RU007/2015LRGS(2015)/NGOD/UM/KPTMOSTI under Grant No SF014-2014
文摘We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575137)the Program on Social Development by Department of Science and Technology of Shanxi Province,China(Grant No.20140313023-3)
文摘We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of - 20 nm and from - 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance.