CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hard...CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.展开更多
基金Project(U1034002)supported by the National Natural Science Foundation of China(NSFC)-Guangdong Natural Science Mutual Funds
文摘CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.