To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APP...To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that striatal-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloidbeta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, striatal-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.展开更多
文摘To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that striatal-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloidbeta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, striatal-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.