期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring 被引量:1
1
作者 Pei Sheng JI Xiao Ling YANG Jian Hui CHEN 《Journal of Mathematical Research and Exposition》 CSCD 2011年第6期965-976,共12页
Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it... Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it is a derivation with respect to both arguments.In this paper,we define the notions of central biderivation and extremal biderivation of Nn(R),and prove that any biderivation of Nn(R)can be decomposed as a sum of an inner biderivation,central biderivation and extremal biderivation for n ≥ 5. 展开更多
关键词 biderivation strictly upper triangular matrix ALGEBRA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部