The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling t...The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling techniques,especially twodimensional numerical modeling using ABAQUS software,along with field-based structural geological methods are used to assess the geometry and evolution of the pull-apart along the releasing stepovers in this strike-slip system.The utilized numerical approach applies two-dimensional(2D)finite-element modeling related to elastic Newtonian rheology to evaluate the distribution of stress and localization of strain within the pull-apart basin.This study provides valuable insights into the factors controlling the shape,as well as exploring the interaction between the pre-existing structures in this right-lateral strike-slip releasing stepover,pull-apart basin development in strike-slip systems,and stress-strain behavior by studying the impact of boundary conditions and fault overlap on the deformation pattern.The models consider three representative geometries of fault segment interactions,including underlapping,neutral,and overlapping stepovers,positioned at angles of 30°,45°,and 60°.The results indicate that increased overlap creates an extensive and elongated deformation pattern,while decrease overlap leads to block rotation and a narrow deformation pattern.In addition,the degree of overlapping between parallel strike-slip faults influences the stress and strain.The mean normal stress within the transtensional basin,located between the fault segments,exhibits an extensional nature,while the region outside the stepover experiences general compressive mean normal stresses.The Piranshahr transtensional pull-apart basin exemplifies the progressive evolution of underlapping stepovers,resulting in displaying an elongated rhomboidal to trapezoidal-shaped geometry over time.展开更多
In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat...In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.展开更多
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ...Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.展开更多
Sedimentary sequences with drastic thickening over short distances have been observed in Qiaojia County,Yunnan Province,Southwest China.These are related to a pull-apart basin controlled by the Xiaojiang strike-slip f...Sedimentary sequences with drastic thickening over short distances have been observed in Qiaojia County,Yunnan Province,Southwest China.These are related to a pull-apart basin controlled by the Xiaojiang strike-slip fault.Our field investigations include determining the surface characteristics of the Qiaojia basin which consists of three terrace sequences and a series of alluvial fans.Several drill holes were used to reveal the internal structure of the basin.The results suggest that the basinal sediments are over 300 m thick.From bottom to top,they can be classified into five different units.We inferred that the units of lacustrine sediments are deposited in a paleolake which was formed by a paleo-landslide.Accelerator mass spectrometry radiocarbon dating(AMS ^(14)C dating) was used to estimate the ages of the terrace and lacustrine sediments.We use the results to infer that the paleo-lake has existed about 15,000 years and that the Qiaojia basin was uplifted at an average rate of 3.3 mm/a.Furthermore,we then model the evolution process of the basin and interpreted 6 phases of development.展开更多
The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of th...The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.展开更多
Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significan...Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.展开更多
Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed i...Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.展开更多
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem...Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.展开更多
Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution...Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.展开更多
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
Several international oil companies had conducted petroleum exploration, but failed to make any commercially viable discoveries in the Doseo Basin for over 30 years. In this article, an integrated analysis, based on t...Several international oil companies had conducted petroleum exploration, but failed to make any commercially viable discoveries in the Doseo Basin for over 30 years. In this article, an integrated analysis, based on the latest seismic and drilling data combined with exploration practice and tectonic, sedimentary as well as petroleum-geological characteristics of the basin, has been conducted with the aim to disclose the key factors of hydrocarbon accumulation and enrichment and then to find the potential petroleum plays. The Doseo Basin in Chad is a Meso-Cenozoic lacustrine rift basin developed on the Precambrian crystalline basement in the Central African Shear Zone. It is a half graben rift controlled by the strike-slip fault at the northern boundary, and can be divided into two sub-basins, an uplift and a slope. The basin experienced two rifting periods in the Cretaceous and was strongly inverted with the erosion thickness of 800–1000 m during the Eocene, and then entered the depression and extinction period. Structurally, a large number of normal faults and strike-slip faults are identified in the basin, and the boundary faults are inverted faults with normal at first. The main structural styles include inverted anticlines, fault noses, complex fault-blocks and flower structures. The Lower Cretaceous is the main sedimentary strata, which are divided into the Mangara Group, Kedeni, Doba and Koumra Formations from bottom to up. Two transgressive-regressive cycles developed in the Lower Cretaceous indicates with mainly lacustrine, fluvial, delta, braided-delta, fan-delta sandstone and mudstone. The effective source rock in the basin is the deep-lacustrine mudstone of the Lower Cretaceous containing the type Ⅰ and type Ⅱ;organic matters. Furthermore, Inverted anticlines and fault-complicated blocks comprise the main trap types and the Kedeni Uplift is the most favorable play, followed by the Northern Steep Slope and Southern Gentle Slope. Lateral sealing capacity of faults controls the hydrocarbon abundance.展开更多
Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a part...Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a partial result of the whole research.展开更多
The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic se...The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.展开更多
Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping...Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping or laboratory experiments, we investigated a nascent pull-apart basin in the subsurface. We characterized a nascent pull-apart basin along the strike-slip fault within the Woodford Shale by using seismic attributes analyses, including coherence, dip-azimuth, and curvature. The results indicate a 32 km long, N-S striking strike-slip fault that displays a distinct but young pull-apart basin, which is ~1.6 km by 3.2 km in size and is bounded by two quasi-circular faults. The curvature attribute map reveals two quasi-circular folds, which depart from the main strike-slip fault at ~25°, resulting in an elliptical basin. Inside the basin, a series of echelon quasi-circular normal faults step into the bottom of the basin with ~80 m of total subsidence. We propose that the controls of the shape of pull-apart basin are the brittleness of the shale, and we suggest proper seismic attributes as a useful tool for investigating high fracture intensity in the subsurface for hydrofracturing and horizontal drilling within the shale.展开更多
The subtle strike-slip tectonic deformation and its relationship to deposition, overpressure and hydrocarbon migration were studied on the basis of systematic sorting of tectonic data.(1) The local T(tension) fracture...The subtle strike-slip tectonic deformation and its relationship to deposition, overpressure and hydrocarbon migration were studied on the basis of systematic sorting of tectonic data.(1) The local T(tension) fractures derived from sinistral strike-slip process were formed before 10.5 Ma, large in number in the nose structure of the eastern slope, and reactivated episodically under the effect of fluid overpressure in the late stage, they served as dominant vertical hydrocarbon migration paths in the slope area of basin.(2) The dextral strike-slip extension was conducive to the increase of depositional rate and formation of regional under-compacted seal, and induced generation of local T fractures which triggered the development of diapirs; in turn, the development of diapirs made T fractures grow in size further.(3) The sinistral strike-slip process weakened after 10.5 Ma, causing tectonic movement characterized by compression in the north and rotational extension in the south, and the uplift and erosion of strata in Hanoi sag and a surge in clastics supply for south Yinggehai sag. Finally, migrating slope channelized submarine fans and superimposed basin floor fans were developed respectively on the asymmetrical east and west slopes of the Yinggehai sag.展开更多
Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart o...Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart of an extensional basin. Parameters used in calculation include thickness and length of deposition and depth of detachment. The results of calculation show that the amount of pull-apart of the Laolongwan Basin is about 30 km. Based on previous studies and calculating by using the average slip rate method, amount of pull-apart of the other two smaller basins are 22 km and 8 km, respectively. Thus, the total displacement of strike-slip along the Haiyuan fault zone is about 60 km, which is close to the offset of the Yellow River from Jingtai to Jingyuan.展开更多
3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation ...3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and ep...The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.展开更多
文摘The Piranshahr pull-apart basin,situated in the northwestern part of the Zagros Main Recent Fault(MRF),is characterized by two right-stepping segments of the dextral MRF.Here,a combination of finite element modeling techniques,especially twodimensional numerical modeling using ABAQUS software,along with field-based structural geological methods are used to assess the geometry and evolution of the pull-apart along the releasing stepovers in this strike-slip system.The utilized numerical approach applies two-dimensional(2D)finite-element modeling related to elastic Newtonian rheology to evaluate the distribution of stress and localization of strain within the pull-apart basin.This study provides valuable insights into the factors controlling the shape,as well as exploring the interaction between the pre-existing structures in this right-lateral strike-slip releasing stepover,pull-apart basin development in strike-slip systems,and stress-strain behavior by studying the impact of boundary conditions and fault overlap on the deformation pattern.The models consider three representative geometries of fault segment interactions,including underlapping,neutral,and overlapping stepovers,positioned at angles of 30°,45°,and 60°.The results indicate that increased overlap creates an extensive and elongated deformation pattern,while decrease overlap leads to block rotation and a narrow deformation pattern.In addition,the degree of overlapping between parallel strike-slip faults influences the stress and strain.The mean normal stress within the transtensional basin,located between the fault segments,exhibits an extensional nature,while the region outside the stepover experiences general compressive mean normal stresses.The Piranshahr transtensional pull-apart basin exemplifies the progressive evolution of underlapping stepovers,resulting in displaying an elongated rhomboidal to trapezoidal-shaped geometry over time.
基金partly supported by the National Natural Science Foundation of China (Grant No. 4224100017)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (Grant No.2020CX010300)。
文摘In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin.
基金funded by the National Natural Science Foundation of China(No.U21B2063)the Science and Technology Department of China Petrochemical Corporation(Sinopec)(No.P21086-3,No.P22122).
文摘Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.
基金funded by the Major State Basic Research Development Program of China(2013CB733200)the State Key Program of National Natural Science of China(41572302)
文摘Sedimentary sequences with drastic thickening over short distances have been observed in Qiaojia County,Yunnan Province,Southwest China.These are related to a pull-apart basin controlled by the Xiaojiang strike-slip fault.Our field investigations include determining the surface characteristics of the Qiaojia basin which consists of three terrace sequences and a series of alluvial fans.Several drill holes were used to reveal the internal structure of the basin.The results suggest that the basinal sediments are over 300 m thick.From bottom to top,they can be classified into five different units.We inferred that the units of lacustrine sediments are deposited in a paleolake which was formed by a paleo-landslide.Accelerator mass spectrometry radiocarbon dating(AMS ^(14)C dating) was used to estimate the ages of the terrace and lacustrine sediments.We use the results to infer that the paleo-lake has existed about 15,000 years and that the Qiaojia basin was uplifted at an average rate of 3.3 mm/a.Furthermore,we then model the evolution process of the basin and interpreted 6 phases of development.
基金supported by the Major National Science and Technology Projects of China (No. 2008ZX05029-002)CNPC Research Topics of China (No.07B60101)
文摘The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations.
基金National Natural Science Foundation (40772086)Common advanced projects of CNPC oil and gas exploration (07-01C-01-04)
文摘Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.
基金Supported by the National Natural Science Foundation of China(91955204)PetroChina-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX010101)。
文摘Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin.
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
基金Supported by the Science and Technology Cooperation Project of CNPC-SWPU Innovation Alliance (2020CX010101)National Natural Science Foundation of China (91955204)。
文摘Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds.
基金financially supported by the National Science Foundation of China(grant No.41372146)
文摘Objective Oil and gas are abundant in the Ordovician Yingshan Formation carbonate karst reservoirs on the northern slope of Tazhong uplift in the Tarim Basin, and have extremely complicated oil-gas-water distribution, however. The difference in burial depth of the reservoirs between east and west sides is up to 1000 m. Water-bearing formations exist between oil- and gas-bearing formations vertically and water-producing wells are drilled between oil- and gas-producing wells. Macroscopically, oil and gas occur at low positions, while water occurs at high positiona on the northern slope of Tazhong uplift. The mechanism of differential hydrocarbon enrichment in heterogeneous reservoirs is by far not clarified, which has affected the efficient exploration and development of oil and gas fields in this area.
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金Supported by the China National Science and Technology Major Project (2016ZX05029005)CNPC Scientific Research and Technology Development Project (2021DJ31)。
文摘Several international oil companies had conducted petroleum exploration, but failed to make any commercially viable discoveries in the Doseo Basin for over 30 years. In this article, an integrated analysis, based on the latest seismic and drilling data combined with exploration practice and tectonic, sedimentary as well as petroleum-geological characteristics of the basin, has been conducted with the aim to disclose the key factors of hydrocarbon accumulation and enrichment and then to find the potential petroleum plays. The Doseo Basin in Chad is a Meso-Cenozoic lacustrine rift basin developed on the Precambrian crystalline basement in the Central African Shear Zone. It is a half graben rift controlled by the strike-slip fault at the northern boundary, and can be divided into two sub-basins, an uplift and a slope. The basin experienced two rifting periods in the Cretaceous and was strongly inverted with the erosion thickness of 800–1000 m during the Eocene, and then entered the depression and extinction period. Structurally, a large number of normal faults and strike-slip faults are identified in the basin, and the boundary faults are inverted faults with normal at first. The main structural styles include inverted anticlines, fault noses, complex fault-blocks and flower structures. The Lower Cretaceous is the main sedimentary strata, which are divided into the Mangara Group, Kedeni, Doba and Koumra Formations from bottom to up. Two transgressive-regressive cycles developed in the Lower Cretaceous indicates with mainly lacustrine, fluvial, delta, braided-delta, fan-delta sandstone and mudstone. The effective source rock in the basin is the deep-lacustrine mudstone of the Lower Cretaceous containing the type Ⅰ and type Ⅱ;organic matters. Furthermore, Inverted anticlines and fault-complicated blocks comprise the main trap types and the Kedeni Uplift is the most favorable play, followed by the Northern Steep Slope and Southern Gentle Slope. Lateral sealing capacity of faults controls the hydrocarbon abundance.
文摘Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a partial result of the whole research.
文摘The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.
文摘Pull-apart basins are faulting and folding zones with high intensity of fractures that strongly affect the production in unconventional shale gas. While most observations of pull-apart basins were from surface mapping or laboratory experiments, we investigated a nascent pull-apart basin in the subsurface. We characterized a nascent pull-apart basin along the strike-slip fault within the Woodford Shale by using seismic attributes analyses, including coherence, dip-azimuth, and curvature. The results indicate a 32 km long, N-S striking strike-slip fault that displays a distinct but young pull-apart basin, which is ~1.6 km by 3.2 km in size and is bounded by two quasi-circular faults. The curvature attribute map reveals two quasi-circular folds, which depart from the main strike-slip fault at ~25°, resulting in an elliptical basin. Inside the basin, a series of echelon quasi-circular normal faults step into the bottom of the basin with ~80 m of total subsidence. We propose that the controls of the shape of pull-apart basin are the brittleness of the shale, and we suggest proper seismic attributes as a useful tool for investigating high fracture intensity in the subsurface for hydrofracturing and horizontal drilling within the shale.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-005)
文摘The subtle strike-slip tectonic deformation and its relationship to deposition, overpressure and hydrocarbon migration were studied on the basis of systematic sorting of tectonic data.(1) The local T(tension) fractures derived from sinistral strike-slip process were formed before 10.5 Ma, large in number in the nose structure of the eastern slope, and reactivated episodically under the effect of fluid overpressure in the late stage, they served as dominant vertical hydrocarbon migration paths in the slope area of basin.(2) The dextral strike-slip extension was conducive to the increase of depositional rate and formation of regional under-compacted seal, and induced generation of local T fractures which triggered the development of diapirs; in turn, the development of diapirs made T fractures grow in size further.(3) The sinistral strike-slip process weakened after 10.5 Ma, causing tectonic movement characterized by compression in the north and rotational extension in the south, and the uplift and erosion of strata in Hanoi sag and a surge in clastics supply for south Yinggehai sag. Finally, migrating slope channelized submarine fans and superimposed basin floor fans were developed respectively on the asymmetrical east and west slopes of the Yinggehai sag.
文摘Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart of an extensional basin. Parameters used in calculation include thickness and length of deposition and depth of detachment. The results of calculation show that the amount of pull-apart of the Laolongwan Basin is about 30 km. Based on previous studies and calculating by using the average slip rate method, amount of pull-apart of the other two smaller basins are 22 km and 8 km, respectively. Thus, the total displacement of strike-slip along the Haiyuan fault zone is about 60 km, which is close to the offset of the Yellow River from Jingtai to Jingyuan.
基金project entitled Seismic Identification and Accumulation Control of Strike-Slip Faults in Superimposed Basins inWest-central Part of China initiated by the Bureau of Geophysical Prospecting,CNPC(No.:03-02-2022).
文摘3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
文摘The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.