期刊文献+
共找到341篇文章
< 1 2 18 >
每页显示 20 50 100
Effects of Intracratonic Strike-slip Fault on the Differentiation of Carbonate Microfacies: A Case Study of a Permian Platform Margin in the Sichuan Basin(SW China)
1
作者 LIU Jiawei WU Guanghui +3 位作者 TANG Qingsong WU Yonghong ZHANG Wenjin ZHAO Zhongyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期936-954,共19页
In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat... In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin. 展开更多
关键词 strike-slip faults segmentation carbonate platform sediment dispersal pattern Changxing Formation Kaijiang–Liangping trough Sichuan basin
下载PDF
The Middle and Lower Cambrian salt tectonics in the central Tarim Basin,China:A case study based on strike-slip fault characterization
2
作者 Qing Bian Jibiao Zhang Cheng Huang 《Energy Geoscience》 EI 2024年第2期53-61,共9页
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ... Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift. 展开更多
关键词 Tarim basin Salt tectonics strike-slip fault Structural analysis Seismic interpretation of decoupling zone
下载PDF
Superimposed hydrocarbon accumulation through multi-source and multi-stage evolution in the Cambrian Xixiangchi Group of eastern Sichuan Basin:A case study of the Pingqiao gas-bearing anticline 被引量:2
3
作者 Ziming Sun 《Energy Geoscience》 2023年第1期131-142,共12页
The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in... The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin. 展开更多
关键词 superimposed accumulation model Natural gas Xixiangchi group CAMBRIAN Eastern Sichuan basin
下载PDF
Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China 被引量:3
4
作者 MA Bingshan LIANG Han +7 位作者 WU Guanghui TANG Qingsong TIAN Weizhen ZHANG Chen YANG Shuai ZHONG Yuan ZHANG Xuan ZHANG Zili 《Petroleum Exploration and Development》 SCIE 2023年第2期373-387,共15页
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem... Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds. 展开更多
关键词 strike-slip fault fault timing fault evolution seismic-geological analysis U-Pb dating faulting mechanism cra-tonic Sichuan basin
下载PDF
A hydrocarbon enrichment model and prediction of favorable accumulation areas in complicated superimposed basins in China 被引量:16
5
作者 Pang Xiongqi Meng Qingyang +2 位作者 Jiang Zhenxue Liu Luofu Lu Xiuxiang 《Petroleum Science》 SCIE CAS CSCD 2010年第1期10-19,共10页
The geologic conditions of superimposed basins in China are very complicated. This is mainly shown by multi-phase structural evolution, multiple sets of source-reservoir-cap rock combinations, multiple stages of hydro... The geologic conditions of superimposed basins in China are very complicated. This is mainly shown by multi-phase structural evolution, multiple sets of source-reservoir-cap rock combinations, multiple stages of hydrocarbon generation and expulsion from source rocks, multi-cycle hydrocarbon enrichment and accumulation, and multi-phase reservoir adjustment and reconstruction. The enrichment, accumulation and distribution of hydrocarbon is mainly controlled by the source rock kitchen, paleo- anticline, regional cap rock and intensity of tectonic movement. In this paper, the T-BCMS model has been developed to predict favorable areas of hydrocarbon accumulation in complicated superimposed basins according to time and spatial relationships among five key factors. The five factors include unconformity surface representing tectonic balancing (B), regional cap rock representing hydrocarbon protection (C), paleo-anticline representing hydrocarbon migration and accumulation (M), source rock kitchen representing hydrocarbon generation and expulsion (S) and geological time (T). There are three necessary conditions to form favorable areas of hydrocarbon accumulation. First, four key factors BCMS should be strictly in the order of BCMS from top to bottom. Second, superimposition of four key factors BCMS in the same area is the most favorable for hydrocarbon accumulation. Third, vertically ordered combination and superimposition in the same area of BCMS should occur at the same geological time. The model has been used to predict the most favorable exploration areas in Ordovician in the Tarim Basin in the main hydrocarbon accumulation periods. The result shows that 95% of the discovered Ordovician hydrocarbon reservoirs are located in the predicted areas, which indicates the feasibility and reliability of the key factor matching T-BCMS model for hydrocarbon accumulation and enrichment. 展开更多
关键词 Complicated superimposed basin key factor matching T-BCMS model favorable area for hydrocarbon accumulation hydrocarbon distribution prediction
下载PDF
Classification of Complex Reservoirs in Superimposed Basins of Western China 被引量:11
6
作者 PANG Xiongqi ZHOU Xinyuan +3 位作者 LIN Changsong HUO Zhipeng LUO Xiaorong PANG Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1011-1034,共24页
Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed b... Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins. The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation, stratigraphic structure and stratigraphic stress-strain action over geological history. Based on the correlation of chronological age on structural sections, superimposed basins can be divided into five types in this study: (1) continuous sedimentation type superimposed basins, (2) middle and late stratigraphic superimposed basins, (3) early and late stratigraphic superimposed basins, (4) early and middle stratigraphic superimposed basins, and (5) long-term exposed superimposed basins. Multiple source-reservoir-caprock assemblages have developed in such basins. In addition, multi-stage hydrocarbon generation and expulsion, multiple sources, polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment, reformation and destruction have occurred in these basins. The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs, and the root causes of this are folding, denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage, diffusion, spilling, oxidation, degradation and cracking. Based on their genesis characteristics, complex reservoirs are divided into five categories: (1) primary reservoirs, (2) trap adjustment type reservoirs, (3) component variant reservoirs, (4) phase conversion type reservoirs and (5) scale-reformed reservoirs. 展开更多
关键词 complex reservoirs tectonic event physically destructive effect chemically destructiveeffect western China's superimposed basins
下载PDF
Multiple-Element Matching Reservoir Formation and Quantitative Prediction of Favorable Areas in Superimposed Basins 被引量:9
7
作者 WANG Huaijie PANG Xiongqi +3 位作者 WANG Zhaoming YU Qiuhua HUO Zhipeng MENG Qingyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1035-1054,共20页
Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Mos... Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97 %. This reflects the effectiveness and reliability of the new theory, methods and technology. 展开更多
关键词 superimposed basin complex hydrocarbon reservoir elements matching reservoirformation prediction of favorable hydrocarbon accumulation zone Tarim basin
下载PDF
Superimposed versus residual basin:The North Yellow Sea Basin 被引量:7
8
作者 Wenyong Li Wenfen Lu +1 位作者 Yanxu Liu Jianchun Xu 《Geoscience Frontiers》 CAS 2012年第1期33-39,共7页
The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. A... The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. Analysis of the development of the basin's three structural layers, self-contained petroleum systems, boundary fault activity, migration of the Mesozoic--Cenozoic sedimentation centers, different basin structures formed during different periods, and superposition of a two-stage extended basin and one-stage depression basin, the North Yellow Sea Basin is recognized as a superimposed basin. 展开更多
关键词 superimposed basin Residual basin Identification method basinal structures basin superposition North Yellow Sea basin
下载PDF
Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins 被引量:4
9
作者 PANG Hong PANG Xiongqi +3 位作者 YANG Haijun LIN Changsong MENG Qingyang WANG Huaijie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1078-1096,共19页
Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are c... Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are characterized currently by trap adjustment, component variation, phase conversion, and scale reformation. This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources. Based on the analysis of a number of complex hydrocarbon reservoirs, there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages: tectonic event intensity, frequency, time and caprock sealing for oil and gas during tectonic evolution. Research shows that the larger the tectonic event intensity, the more frequent the tectonic event, the later the last tectonic event, the weaker the caprock sealing for oil and gas, and the greater the volume of destroyed hydrocarbons in the early stages. Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms, a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established. The predication method and technical procedures were applied in the Tazhong area of Tarim Basin, where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred. Geohistorical hydrocarbon accumulation reached 3.184 billion tons, of which 1.271 billion tons were destroyed. The total volume of remaining resources available for exploration is -1.9 billion tons. 展开更多
关键词 superimposed basin hydrocarbon reservoirs multiple structural alteration tectonic eventintensity potential resources Tarim basin
下载PDF
Comparative Analysis of Sequence Characteristics among Different Superimposed Stages of the Chelif Basin,Algeria 被引量:4
10
作者 ZHANG Yuanfu JIANG Zaixing WANG Yue BAO Dandan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第6期1041-1051,共11页
Superimposed basins were investigated with respect to tectonic evolution, sediment deposition and petroleum characteristics within a single superposition stage generally. The comparative study was seldom seen. Sequenc... Superimposed basins were investigated with respect to tectonic evolution, sediment deposition and petroleum characteristics within a single superposition stage generally. The comparative study was seldom seen. Sequence characteristics were compared for two different superimposed stages - an expanding rifting stage and a depression-foreland transition stage - in the Chelif Basin during the Miocene in this paper. A model and mechanism for sequence evolution of superimposed basins in different dynamic situations are discussed with respect to sequence similarities and differences. The compared characters include sequence thickness, sequence boundaries and system tracts, as well as sediment deposition within sequences and sequence development patterns. Finally, some typical features of sequence development concomitant with changes of superimposed stages in the Chelif Basin are discussed. 展开更多
关键词 superimposed basin sequence characteristics sediment deposition structural dynamics petroleum accumulation
下载PDF
Late-Stage Reservoir Formation Effect and Its Dynamic Mechanisms in Complex Superimposed Basins 被引量:5
11
作者 KANG Dejiang PANG Xiongqi +3 位作者 KUANG Jun LUO Xiaorong PANG Hong LEI Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1055-1077,共23页
Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing ... Complex superimposed basins exhibit multi-stage tectonic events and multi-stage reservoir formation; hydrocarbon reservoirs formed in the early stage have generally late-stage genesis characteristics after undergoing adjustment, reconstruction and destruction of later-stage multiple tectonic events. In this paper, this phenomenon is called the late-stage reservoir formation effect. The late-stage reservoir formation effect is a basic feature of oil and gas-forming reservoirs in complex superimposed basins, revealing not only multi-stage character, relevance and complexity of oil and gas- forming reservoirs in superimposed basins but also the importance of late-stage reservoir formation. Late-stage reservoir formation is not a basic feature of oil and gas forming reservoir in superimposed basins. Multi-stage reservoir formation only characterizes one aspect of oil and gas-forming reservoir in superimposed basins and does not represent fully the complexity of oil and gas-forming reservoir in superimposed basins. We suggest using "late-stage reservoir formation effect" to replace the "late-stage reservoir formation" concept to guide the exploration of complex reservoirs in superimposed basins. Under current geologic conditions, the late-stage reservoir formation effect is represented mainly by four basic forms: phase transformation, scale reconstruction, component variation and trap adjustment. The late-stage reservoir formation effect is produced by two kinds of geologic processes: first, the oil and gas retention function of various geologic thresholds (hydrocarbon expulsion threshold, hydrocarbon migration threshold, and hydrocarbon accumulating threshold) causes the actual time of oil and gas reservoir formation to be later than the time of generation of large amounts of hydrocarbon in a conventional sense, producing the late-stage reservoir formation effect; second, multiple types of tectonic events (continuously strong reconstruction, early-stage strong reconstruction, middle-stage strong reconstruction, late-stage strong reconstruction and long-term stable sedimentation) after oil and gas reservoir formation lead to adjustment, reconstruction and destruction of reservoirs formed earlier, and form new secondary hydrocarbon reservoirs due to the late-stage reservoir formation effect. 展开更多
关键词 superimposed basin late-stage reservoir formation effect late-stage reservoir formation tectonic event geologic threshold
下载PDF
Control of strike-slip faults on Sinian carbonate reservoirs in Anyue gas field, Sichuan Basin, SW China
12
作者 HE Xiao TANG Qingsong +5 位作者 WU Guanghui LI Fei TIAN Weizhen LUO Wenjun MA Bingshan SU Chen 《Petroleum Exploration and Development》 SCIE 2023年第6期1282-1294,共13页
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn... The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs. 展开更多
关键词 pre-Cambrian strike-slip fault carbonate reservoir FRACTURING controlling factor Sichuan basin
下载PDF
Types, Evolution and Pool-Controlling Significance of Pool Fluid Sources in Superimposed Basins:A Case Study from Paleozoic and Mesozoic in South China 被引量:1
13
作者 徐思煌 梅廉夫 +2 位作者 袁彩萍 马永生 郭彤楼 《Journal of China University of Geosciences》 SCIE CSCD 2007年第1期49-59,共11页
Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. O... Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. On the basis of eight typical petroleum pools, the type, evolution in time-space, and the controlling of petroleum distribution of pool fluid sources are comprehensively analyzed. The main types of pool fluid sources include hydrocarbon, generated primarily and secondly from source rocks, gas cracked from crude oil, gas dissolved in water, inorganic gas, and mixed gases. In terms of evolution, the primary hydrocarbon was predominant prior to Indosinian; during Indosinian to Yenshanian the secondary gas includes gas cracked from crude oil, gas generated secondarily, gas dissolved in water, and inorganic gas dominated; during Yenshanian to Himalayan the most fluid sources were mixed gases. Controlled by pool fluid sources, the pools with mixed gas sources distributed mainly in Upper Yangtze block, especially Sichuan (四川) basin; the pools with primary hydrocarbon sources distributed in paleo-uplifts such as Jiangnan (江南), but most of these pools became fossil pools; the pools with secondary hydrocarbon source distributed in the areas covered by Cretaceous and Eogene in Middle-Lower Yangtze blocks, and Chuxiong (楚雄), Shiwandashan (十万大山), and Nanpanjiang (南盘江) basins; the pools with inorganic gas source mainly formed and distributed in tensional structure areas. 展开更多
关键词 superimposed basins pool fluid sources pool-forming dynamics tectonic evolution petroleum distribution marine strata South China
下载PDF
Superimposed characteristics and genetic mechanism of strike-slip faults in the Bohai Sea, China 被引量:1
14
作者 HU Zhiwei XU Changgui +4 位作者 WANG Deying REN Jian LIU Yubo XIAO Shuguang ZHOU Xin 《Petroleum Exploration and Development》 2019年第2期265-279,共15页
Based on the 3 D seismic structure interpretation of Bohai Sea, combined with physical modeling of structure, structural style analysis and apatite fission track simulation, the structural characteristics and genetic ... Based on the 3 D seismic structure interpretation of Bohai Sea, combined with physical modeling of structure, structural style analysis and apatite fission track simulation, the structural characteristics and genetic mechanism of the Cenozoic strike-slip faults in Bohai Sea were investigated. The results show that Tanlu strike-slip fault experienced three stages of strike-slip activities in the Cenozoic,and the transition from left-lateral strike to right-lateral strike-slip was completed at the end of the fourth member of the Shahejie Formation. The strike-slip faults in the Bohai Sea have the characteristics of multi-stage and multi-strength stress superposition. According to the superimposed forms of different strengths, different properties and different ratios, they can be divided into three major genetic types,extension and strike-slip superimposition, extension and extrusion superimposition, extrusion and strike-slip superimposition, and fifteen typical structure patterns. Affected by multiple changes in the direction and rate of subduction of the Cenozoic Pacific plate, the difference between the Cenozoic extension and the strike-slip in the Bohai Sea area leads to the diversity of the fault system and the zoning of the depression structure. According to superimposition features of faults, the Bohai Sea area can be divided into the Liaoxi S-type weak strike-slip zone, Liaodong braided strong strike-slip zone, Boxi conjugated medium strike-slip zone, Bodong brush structure medium strike-slip zone and Bonan parallel strong strike-slip zone. These zones differ in oil and gas accumulation features. 展开更多
关键词 strike-slip FAULT superimposITION characteristic GENETIC mechanism Tanlu FAULT Bohai BAY basin Bohai Sea physical modeling of structure
下载PDF
Fault characteristics and their control on oil and gas accumulation in the southwestern Ordos Basin
15
作者 Yongtao Liu Shuanghe Dai +7 位作者 Yijun Zhou Fufeng Ding Mingjie Li Xingyun Li Yu Zhao Binhua Guo Tong Li Junan Han 《Energy Geoscience》 EI 2024年第1期162-171,共10页
3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation ... 3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems. 展开更多
关键词 Coherent attribute strike-slip fault Flower structure Shale oil Ordos basin
下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
16
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan basin
下载PDF
Characteristics of strike-slip inversion structures of the Karatau fault and their petroleum geological significances in the South Turgay Basin,Kazakhstan 被引量:13
17
作者 Yin Wei Fan Zifei +6 位作者 Zheng Junzhang Yin Jiquan Zhang Mingjun Sheng Xiaofeng Guo Jianjun Li Qiyan Lin yaping 《Petroleum Science》 SCIE CAS CSCD 2012年第4期444-454,共11页
The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of th... The Karatau fault is one of the important strike-slip faults in central Asia,and the South Turgay Basin is located towards its northern end.Detailed seismic interpretation indicated that the strikeslip tectonism of the Karatau fault weakened gradually from west to east in the South Turgay Basin.Typical flower structures developed on the section,and strike-slip faults showed an echelon pattern on planar view.The Karatau strike-slip fault affected the South Turgay Basin in two periods:(1) The South Turgay strike-slip pull-apart rift basin formed as a result of regional extensive stress in the Early-Middle Jurassic,characterized by the juxtaposition of horsts and grabens.The formation of horsts provided favorable reservoir spaces for later hydrocarbon accumulation,and different filling stages of grabens controlled different reservoir-forming factors in grabens.(2) Two stages of tectonic inversion occurred in the Late Jurassic and Late Cretaceous and played a crucial role in the final shape of the structure in the South Turgay Basin.The oil and gas migrated to form reservoirs and mainly concentrated in the horsts,graben slopes and in both sides of the strike-slip fault zone.In the case of the degree of accumulation of petroleum,the factor explaining why horsts are better than grabens is the strike-slip pull-apart of the South Turgay Basin,and the structure inversion of the South Turgay Basin explains why the west graben is better than the east one.Overall,the Karatau strike-slip fault played a very important role in the formation of the South Turgay Basin and its hydrocarbon accumulations. 展开更多
关键词 South Turgay basin Karatau fault tectonic style strike-slip inversion petroleum geological significance
下载PDF
Characteristics and evolution of strike-slip tectonics of the Liaohe Western Sag,Bohai Bay Basin 被引量:7
18
作者 Tong Hengmao Yu Fusheng Geng Changbo 《Petroleum Science》 SCIE CAS CSCD 2008年第3期223-229,共7页
Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significan... Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene. 展开更多
关键词 Bohai Bay basin Western Sag Tanlu Fault strike-slip tectonics tectonic evolution
下载PDF
Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China 被引量:8
19
作者 WU Guanghui MA Bingshan +4 位作者 HAN Jianfa GUAN Baozhu CHEN Xin YANG Peng XIE Zhou 《Petroleum Exploration and Development》 CSCD 2021年第3期595-607,共13页
Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed i... Through fault structure analysis and chronology study, we discuss the origin and growth mechanisms of strike-slip faults in the Tarim Basin.(1) Multiple stages strike-slip faults with inherited growth were developed in the central Tarim cratonic basin. The faults initiation time is constrained at the end of Middle Ordovician of about 460 Ma according to U-Pb dating of the fault cements and seismic interpretation.(2) The formation of the strike-slip faults was controlled by the near N-S direction stress field caused by far-field compression of the closing of the Proto-Tethys Ocean.(3) The faults localization and characteristics were influenced by the pre-existing structures of the NE trending weakening zones in the basement and lithofacies change from south to north.(4) Following the fault initiation under the Andersonian mechanism, the strike-slip fault growth was dominantly fault linkage, associated with fault tip propagation and interaction of non-Andersonian mechanisms.(5) Sequential slip accommodated deformation in the conjugate strike-slip fault interaction zones, strong localization of the main displacement and deformation occurred in the overlap zones in the northern Tarim, while the fault tips, particularly of narrow-deep grabens, and strike-slip segments in thrust zones accumulated more deformation and strain in the Central uplift. In conclusion, non-Andersonian mechanisms, dominantly fault linkage and interaction, resulted in the small displacement but long intraplate strike-slip fault development in the central Tarim Basin. The regional and localized field stress, and pre-existing structures and lithofacies difference had strong impacts on the diversity of the strike-slip faults in the Tarim cratonic basin. 展开更多
关键词 strike-slip fault fault dating fault growth mechanism non-Andersonian faulting stress field pre-existing structure Tarim basin
下载PDF
Vertical Differential Structural Deformation of the Main Strike-slip Fault Zones in the Shunbei Area,Central Tarim Basin:Structural Characteristics,Deformation Mechanisms,and Hydrocarbon Accumulation Significance 被引量:3
20
作者 TIAN Fanglei HE Dengfa +1 位作者 CHEN Jiajun MAO Danfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1415-1431,共17页
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i... Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments. 展开更多
关键词 strike-slip fault vertical differential structural deformation hydrocarbon accumulation Shunbei area central Tarim basin
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部