Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factor...Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.展开更多
This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot mo...This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot modeling and parameter calculation,the twisted string actuator shows its advantage when applied to situations such as jumping of robots,where explosiveness of output force matters.In this study,a wheeled bipedal robot equipped with the twisted string actuator is designed and fabricated.It weighs 16.0 kg and can perform jumps when it encounters obstacles.The prototype can jump up to a stage with a maximum height of 1.0 m using electric power,which is approximately 1.5 times the height of its stretched legs.展开更多
基金Supported by the National Science and Technology Major Project(2016ZX05060-014)PetroChina Major Science and Technology Project(ZD2019-183-005)。
文摘Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.
基金Project supported by the Grant from Zhejiang Lab,China(No.2019KE0AD01)。
文摘This study introduces a wheeled robot platform with jumping ability.To realize jump movement,a twisted string lever mechanism is used,which is characterized by its compactness and variable gear ratio.Based on robot modeling and parameter calculation,the twisted string actuator shows its advantage when applied to situations such as jumping of robots,where explosiveness of output force matters.In this study,a wheeled bipedal robot equipped with the twisted string actuator is designed and fabricated.It weighs 16.0 kg and can perform jumps when it encounters obstacles.The prototype can jump up to a stage with a maximum height of 1.0 m using electric power,which is approximately 1.5 times the height of its stretched legs.