A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction ang...A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.展开更多
To evaluate the performance of a photovoltaic panel, several parameters must be extracted from the photovoltaic. These parameters are very important for the evaluation, monitoring and optimization of photovoltaic. Amo...To evaluate the performance of a photovoltaic panel, several parameters must be extracted from the photovoltaic. These parameters are very important for the evaluation, monitoring and optimization of photovoltaic. Among the methods developed to extract photovoltaic parameters from current-voltage (I-V) characteristic curve, metaheuristic algorithms are the most used nowadays. A new metaheuristic algorithm namely enhanced vibrating particles system algorithm is presented here to extract the best values of parameters of a photovoltaic cell. Five recent algorithms (grey wolf optimization (GWO), moth-flame optimization algorithm (MFOA), multi-verse optimizer (MVO), whale optimization algorithm (WAO), salp swarm-inspired algorithm (SSA)) are also implemented on the same computer. Enhanced vibrating particles system is inspired by the free vibration of the single degree of freedom systems with viscous damping. To extract the photovoltaic parameters using enhanced vibrating particles system algorithm, the problem can be set as an optimization problem with the objective to minimize the difference between measured and estimated current. Four case studies have been implemented here. The results and comparison with other methods exhibit high accuracy and validity of the proposed enhanced vibrating particles system algorithm to extract parameters of a photovoltaic cell and module.展开更多
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m...The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.展开更多
基金support from the Innovative Research Groups of the National Natural Science Foundation of China (No.50921002)the National Natural Science Foundation of China (Nos.50574091 and 50774084)+1 种基金the "333 Project" Foundation of Jiangsu Provincethe Key Laboratory of Coal Processing & Efficient Utilization,Ministry of Education Foundation (No.CPEUKF 08-02) for this work
文摘A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.
文摘To evaluate the performance of a photovoltaic panel, several parameters must be extracted from the photovoltaic. These parameters are very important for the evaluation, monitoring and optimization of photovoltaic. Among the methods developed to extract photovoltaic parameters from current-voltage (I-V) characteristic curve, metaheuristic algorithms are the most used nowadays. A new metaheuristic algorithm namely enhanced vibrating particles system algorithm is presented here to extract the best values of parameters of a photovoltaic cell. Five recent algorithms (grey wolf optimization (GWO), moth-flame optimization algorithm (MFOA), multi-verse optimizer (MVO), whale optimization algorithm (WAO), salp swarm-inspired algorithm (SSA)) are also implemented on the same computer. Enhanced vibrating particles system is inspired by the free vibration of the single degree of freedom systems with viscous damping. To extract the photovoltaic parameters using enhanced vibrating particles system algorithm, the problem can be set as an optimization problem with the objective to minimize the difference between measured and estimated current. Four case studies have been implemented here. The results and comparison with other methods exhibit high accuracy and validity of the proposed enhanced vibrating particles system algorithm to extract parameters of a photovoltaic cell and module.
文摘The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.