This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests we...This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.展开更多
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of st...The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.展开更多
Experimental and numerical investigations were carried out on the free-free end ring-stiffened cylinder subjected to underwater explosion loading. Numerical analysis was carried out by using the MSC.DYTRAN finite elem...Experimental and numerical investigations were carried out on the free-free end ring-stiffened cylinder subjected to underwater explosion loading. Numerical analysis was carried out by using the MSC.DYTRAN finite element code and the results were compared with experiment results. General coupling was used to simulate the interaction between fluid and structure. The strain rate effect, geometric nonlinearity and initial abnormity in shape were considered. The effective plastic stress and the strain of shell between ribs on different locations were compared and damage mechanism were analyzed..展开更多
The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account o...The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.展开更多
In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formul...In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formulations Can be used to compute the sound pressure of the shell's surface nearfield and farfield.展开更多
为探究凸型加筋锥柱壳在静水压与深水爆炸载荷联合作用下的动态响应,在塑性弦线模型基础上考虑静水压载荷、锥角因素,将问题简化为求解拥有初边界值的波动方程,利用特征值展开将肋间板壳径向位移表示为无穷级数的形式,并对每个特征值计...为探究凸型加筋锥柱壳在静水压与深水爆炸载荷联合作用下的动态响应,在塑性弦线模型基础上考虑静水压载荷、锥角因素,将问题简化为求解拥有初边界值的波动方程,利用特征值展开将肋间板壳径向位移表示为无穷级数的形式,并对每个特征值计算相应的卸载时间,以此显示冲击波载荷的衰减特性。使用有限元程序Abaqus对半锥角为20°的凸型加筋锥柱壳开展最大深度500 m、最大冲击因子0.79 kg 0.5/m的水下爆炸数值模拟研究,对邻近结合处的柱段、锥段肋间板壳的理论模型计算结果进行验证对比和讨论。研究结果表明:与不计静水压相比,静水压使得肋间板壳刚度减小——最大位移出现时刻延滞,最终径向位移随水深而增大;在不同冲击因子下,理论模型与数值模拟最终径向位移误差最大为21.7%(锥段),最小为2.0%(柱段);由于锥角的存在,肋间板壳位移不再关于中心点对称分布,中心点最终位移较柱段减小40%以上。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51508123,named“Study on blast response of floating roof storage tank in material point method”)Natural Science Foundation of Heilongjiang Province,China(LH2019A008)to provide fund for conducting experiments and research.The authors would like to acknowledge Professor Wei Wang in Harbin Institute of Technology for instructions and help in experiment design.
文摘This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.
基金Project supported by the National Defence Science and Technology Emphases Laboratory Foundation of China(No.99JS23.2.1.JWO506).
文摘The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.
文摘Experimental and numerical investigations were carried out on the free-free end ring-stiffened cylinder subjected to underwater explosion loading. Numerical analysis was carried out by using the MSC.DYTRAN finite element code and the results were compared with experiment results. General coupling was used to simulate the interaction between fluid and structure. The strain rate effect, geometric nonlinearity and initial abnormity in shape were considered. The effective plastic stress and the strain of shell between ribs on different locations were compared and damage mechanism were analyzed..
基金the National Natural Sciences Foundation of China(No.19802017)
文摘The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.
文摘In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formulations Can be used to compute the sound pressure of the shell's surface nearfield and farfield.
文摘为探究凸型加筋锥柱壳在静水压与深水爆炸载荷联合作用下的动态响应,在塑性弦线模型基础上考虑静水压载荷、锥角因素,将问题简化为求解拥有初边界值的波动方程,利用特征值展开将肋间板壳径向位移表示为无穷级数的形式,并对每个特征值计算相应的卸载时间,以此显示冲击波载荷的衰减特性。使用有限元程序Abaqus对半锥角为20°的凸型加筋锥柱壳开展最大深度500 m、最大冲击因子0.79 kg 0.5/m的水下爆炸数值模拟研究,对邻近结合处的柱段、锥段肋间板壳的理论模型计算结果进行验证对比和讨论。研究结果表明:与不计静水压相比,静水压使得肋间板壳刚度减小——最大位移出现时刻延滞,最终径向位移随水深而增大;在不同冲击因子下,理论模型与数值模拟最终径向位移误差最大为21.7%(锥段),最小为2.0%(柱段);由于锥角的存在,肋间板壳位移不再关于中心点对称分布,中心点最终位移较柱段减小40%以上。