One of the important issues for geotechnical engineers is the characterization of soil properties such as cohesion and internal friction angle by means of soil testing. A new experimental method of soil characterizati...One of the important issues for geotechnical engineers is the characterization of soil properties such as cohesion and internal friction angle by means of soil testing. A new experimental method of soil characterization based on the surface displacement of strip loaded soils is proposed. The theory to relate the soil deformation/displacement to soil strength properties is presented and compared with a series of conventional soil characterization techniques with direct shear tests. The proposed/developed strip loading tests provide reasonably accurate results compared with traditional direct shear tests. The new strip loading physical simulation and testing devices are helpful for understanding soil strength concepts and also provide an effective bridge connecting with engineering mechanics and foundation engineering courses instructions wherein derivation of bearing capacity theory equations is based on the same MohrCoulomb soil strength parameters. The advantages, limitations, and use of the strip loading modeling/testing technique in engineering education and further more in depth researches are discussed in the concluding remarks part.展开更多
By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional...By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves, including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail. A few new conclusions have been drawn from currently available integral results or computational results.展开更多
Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, ...Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this sys- tem, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction.展开更多
The technique of hydrothermal stripping from mixed aqueous-organic systems is a promising method for synthesizing oxide ceramic powders for high-performance applications. Some factors influencing heterogeneous hydroth...The technique of hydrothermal stripping from mixed aqueous-organic systems is a promising method for synthesizing oxide ceramic powders for high-performance applications. Some factors influencing heterogeneous hydrothermal stripping with water from iron-loaded organic phase of naphthenic acidisooctyl alcoholkerosene, such as initial concentrations of iron and naphthenic acid, concentration of Fe2O3 搒eed, temperature and time, were investigated. Based on the experimental results, the rate equation was established. Nano-ferric oxide powders were obtained by the technique of hydrothermal stripping from the iron-loaded organic phase. The results suggest that the heterogeneous hydrothermal stripping proceeds in 3 steps: adsorption of naphthenic acid dimers and naphthenic complex of iron onto the surface of seed? hydrolysis of adsorbed complex of iron, and condensation of hydrolyzed complex. The process activation energy is 115 kJ/mol and the heterogeneous hydrothermal stripping is controlled by a chemical reaction (the hydrolysis of naphthenic complex of iron).展开更多
In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect ...In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.展开更多
The load distribution of multi-row bearings of large strip rolling mill is fully analyzed by 3D contact boundary element method (BEM). It is found out that bearings are frequently worn out due to serious uneven load...The load distribution of multi-row bearings of large strip rolling mill is fully analyzed by 3D contact boundary element method (BEM). It is found out that bearings are frequently worn out due to serious uneven load on the multi-row rollers. The constraint mechanism of the previous rolling system is found to be unreasonable by theoretical analysis on heavy machinery structure. A mechanism of self-aligning even load for workroll bearing of 2 050 mm hot rolling mill of Baoshan I&S Co. is developed. This device is manufactured with particular regard to the structure of 2 050 mm hot rolling mill mentioned above. Hence, uneven load on multi-row bearings is greatly relieved and their lives are remarkably prolonged. Meanwhile, theoretical analysis and on-spot tests prove the rationality and validity of the device.展开更多
An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inhe...An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.展开更多
文摘One of the important issues for geotechnical engineers is the characterization of soil properties such as cohesion and internal friction angle by means of soil testing. A new experimental method of soil characterization based on the surface displacement of strip loaded soils is proposed. The theory to relate the soil deformation/displacement to soil strength properties is presented and compared with a series of conventional soil characterization techniques with direct shear tests. The proposed/developed strip loading tests provide reasonably accurate results compared with traditional direct shear tests. The new strip loading physical simulation and testing devices are helpful for understanding soil strength concepts and also provide an effective bridge connecting with engineering mechanics and foundation engineering courses instructions wherein derivation of bearing capacity theory equations is based on the same MohrCoulomb soil strength parameters. The advantages, limitations, and use of the strip loading modeling/testing technique in engineering education and further more in depth researches are discussed in the concluding remarks part.
基金Project supported by the National Natural Science Foundation of China(No.10572002).
文摘By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves, including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail. A few new conclusions have been drawn from currently available integral results or computational results.
基金Item Sponsored by National Natural Science Foundation of China (60573172)Doctoral Startup Foundation of Liaoning Province of China (20031069)
文摘Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this sys- tem, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction.
基金Supported by the National Natural Science Foundation of China (No.: 59934080)
文摘The technique of hydrothermal stripping from mixed aqueous-organic systems is a promising method for synthesizing oxide ceramic powders for high-performance applications. Some factors influencing heterogeneous hydrothermal stripping with water from iron-loaded organic phase of naphthenic acidisooctyl alcoholkerosene, such as initial concentrations of iron and naphthenic acid, concentration of Fe2O3 搒eed, temperature and time, were investigated. Based on the experimental results, the rate equation was established. Nano-ferric oxide powders were obtained by the technique of hydrothermal stripping from the iron-loaded organic phase. The results suggest that the heterogeneous hydrothermal stripping proceeds in 3 steps: adsorption of naphthenic acid dimers and naphthenic complex of iron onto the surface of seed? hydrolysis of adsorbed complex of iron, and condensation of hydrolyzed complex. The process activation energy is 115 kJ/mol and the heterogeneous hydrothermal stripping is controlled by a chemical reaction (the hydrolysis of naphthenic complex of iron).
基金This study was financially supported by the National Natural Science Foundation of China under the contract No.59995440the State Key Development Programming on Foundamental Research under the contract No.G2000067208-4the Natural Science Foundation of Liaoning Province under the contract No.2001101021.
文摘In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.
基金This project is supported by National Ninth-five Key Technologies R&D Program of China(No.9552801-0201)National Natural Science Foundation of China(No.50575155).
文摘The load distribution of multi-row bearings of large strip rolling mill is fully analyzed by 3D contact boundary element method (BEM). It is found out that bearings are frequently worn out due to serious uneven load on the multi-row rollers. The constraint mechanism of the previous rolling system is found to be unreasonable by theoretical analysis on heavy machinery structure. A mechanism of self-aligning even load for workroll bearing of 2 050 mm hot rolling mill of Baoshan I&S Co. is developed. This device is manufactured with particular regard to the structure of 2 050 mm hot rolling mill mentioned above. Hence, uneven load on multi-row bearings is greatly relieved and their lives are remarkably prolonged. Meanwhile, theoretical analysis and on-spot tests prove the rationality and validity of the device.
文摘An on-line control method of surface quality for continuous hot-dip galvanized steel strip after cooling is presented, which combines analytical dynamics theory of a thin plate with the finite element method. The inherent characteristics of the non-immersed and partially immersed strip in liquid zinc were calculated on the basis of theoretical analysis and numerical simulation, respectively. Multi-parameter fitting of the deviation between results using different methods was performed. To optimize the strip excitation frequency away from the resonance region, on-line vibration control of the strip near the air knife under full product conditions was achieved by changing the field production parameters based on the field test results. The results indicate that although the axial velocity has little effect on the inherent characteristics of the strip compared with other manufacturing parameters such as the steel specifications and tension, it induces external excitations,including moving the aerodynamic load and bearing vibration. To some degree, the vibration near the air knife can be reduced by strengthening the support stiffness of the contact rolls. A total on-line control program of surface quality for continuous hot-dip galvanized pure Zn and galvannealed steel sheet in the cooling section is proposed.