Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain ca...Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape con- trol system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll opti- mization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully indus- trial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general,the four expected development trends of shape control for cold roiling strip in the future are intelligentization, coordi- nation, refinement, and standardization. The proposed research provides new breakthrough directions for improv- ing shape quality.展开更多
A study on roll gap profile (strip profile) control was accomplished in a1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contourcaused by grinding and wear, the effectivenes...A study on roll gap profile (strip profile) control was accomplished in a1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contourcaused by grinding and wear, the effectiveness of work roll bending were discussed. Using a finiteelement model, the effects of roll contours (ground and wear) on strip profile were investigated.The roll bending effect on strip thickness was also analyzed. It is pointed out that there are somespecial features of flatness control in the temper mill: during temper rolling, roll deformation isslight due to small rolling load, and the loaded roll gap profile mainly depends on work rollcontour, while the backup roll has a little effect on gap crown; the effect of bending force ongauge can not be ignored due to the coupling between flatness control and gauge control. A new rollcontour arrangement adaptable to the mill was presented and has been put into practical production.The application of the new set of rolls showed some good results: larger crown control range of workroll bender, higher rolling stability, better strip profile and flatness quality.展开更多
Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual stri...Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual strip rolling. According to its successful op- eration in the ASP 1700 hot strip mill of Angang Group for one year and also from the statistical results of several crown measurements, it can be definitely said that this control model is highly effective and shows stable performance. The control effectiveness of different gauges of strips with the feedback control is found to increase by 10%-30% compared with that without feedback control.展开更多
The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation...The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.展开更多
It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method t...It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flat- ness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill.展开更多
基金Supported by National Key Technology Support Program of China (Grant No. 2011BAF15B00)Hebei Provincial Natural Science Foundation of China (Grant No. E2016203482)+1 种基金Hebei Provincial Science and Technology Research Foundation of China (Grant No. ZD2014034)Youth Independent Research Program of Yanshan University of China (Grant No. 14LGA003)
文摘Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape con- trol system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll opti- mization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully indus- trial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general,the four expected development trends of shape control for cold roiling strip in the future are intelligentization, coordi- nation, refinement, and standardization. The proposed research provides new breakthrough directions for improv- ing shape quality.
文摘A study on roll gap profile (strip profile) control was accomplished in a1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contourcaused by grinding and wear, the effectiveness of work roll bending were discussed. Using a finiteelement model, the effects of roll contours (ground and wear) on strip profile were investigated.The roll bending effect on strip thickness was also analyzed. It is pointed out that there are somespecial features of flatness control in the temper mill: during temper rolling, roll deformation isslight due to small rolling load, and the loaded roll gap profile mainly depends on work rollcontour, while the backup roll has a little effect on gap crown; the effect of bending force ongauge can not be ignored due to the coupling between flatness control and gauge control. A new rollcontour arrangement adaptable to the mill was presented and has been put into practical production.The application of the new set of rolls showed some good results: larger crown control range of workroll bender, higher rolling stability, better strip profile and flatness quality.
文摘Crown feedback control is one part of the automatic shape control (ASC) system. On the basis of large simulation researches conducted, a linear crown feedback control model was put forward and applied in actual strip rolling. According to its successful op- eration in the ASP 1700 hot strip mill of Angang Group for one year and also from the statistical results of several crown measurements, it can be definitely said that this control model is highly effective and shows stable performance. The control effectiveness of different gauges of strips with the feedback control is found to increase by 10%-30% compared with that without feedback control.
基金the National Major Technology Equipment Research Program during the 9th Five-Year Plan Period (No.97-316-01-1).
文摘The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.
基金Item Sponsored by National High Technology Research and Development Programof China(2009AA04Z163)
文摘It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flat- ness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill.