A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tille...A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.展开更多
A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phe...A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phenotype of white stripe on the 3rd and 4th leaves, but began to turn normal green on the 5th leaf when grown at low temperatures (20℃ and 24℃). Furthermore, the content of total chlorophyll showed an obvious decrease in the leaves with white stripe. These results suggest that the expression of the mutant trait was thermo-sensitive and correlated with the leaf age of seedlings. The genetic analysis indicated that the mutant trait was controlled by a single recessive nuclear gene, designated as tws. In addition, by using SSR markers and an F2 segregating population derived from the cross between the tws mutant and 9311, tws was mapped between the markers MM3907 and MM3928 with a physical distance of 86 kb on dce chromosome 4.展开更多
A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' a...A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR) marker tightly linked with Stv-b' and a cleaved amplified polymorphic sequence (CAPS) marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding.展开更多
叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功...叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功克隆出多个叶色相关基因,其中OsCHLH、OsCAO1、OsCAO2、chlorina1、chlorina9、ygl等直接参与编码叶绿素合成,其余基因均参与叶绿体发育调控。在日本晴(Nipponbare)T-DNA插入突变体库中筛选到一份对温度敏感的白条纹突变体gws(green-white-stripe),遗传分析表明它来自组织培养过程中的单隐性基因突变。利用gws与培矮64杂交组合的F2代群体,将Gws精细定位于第6染色体标记InDel15和InDel16之间,物理距离为73kb,此区间内包含13个基因。基因组序列分析发现,突变体在核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain,RNRS1)编码区第314~315碱基发生缺失,第316~317碱基由GC变为TT,导致该基因阅读框移码突变,蛋白质翻译提前终止。该基因是已经报道的水稻白条纹叶基因St1(Stripe1)的等位基因,gws突变体较st1突变体的白条纹出现早且明显,gws白条纹表型出现在第2片叶之后,而st1的白条纹表型仅出现在第4或5片叶之后。展开更多
为研究叶绿体的差异性发育,本文通过60Co-γ诱变籼稻93-11筛选获得条白叶片和白穗突变体。经遗传分析表明,该突变性状受单隐性核基因控制,暂命名为St-wp(stripe white leaf and white panicle)。突变基因St-wp被精细定位于第6染色体标记...为研究叶绿体的差异性发育,本文通过60Co-γ诱变籼稻93-11筛选获得条白叶片和白穗突变体。经遗传分析表明,该突变性状受单隐性核基因控制,暂命名为St-wp(stripe white leaf and white panicle)。突变基因St-wp被精细定位于第6染色体标记d CAMPs620和In Del620之间,物理距离为9.2kb,此区间内包含3个候选基因。测序对比发现,突变体基因组的核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain)编码区第308碱基由A变为T,导致谷氨酸突变为缬氨酸。该基因与已报道的水稻白条纹叶基因St1和Gws等位,但突变体st1和gws均未表现出白穗性状。本研究可为叶绿体组织差异性发育的深入研究提供依据。展开更多
从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结...从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结果,将该突变体定名为wslwp(white striped leaf and white panicle)。与野生型相比,wslwp突变体2叶期及抽穗期叶片的叶绿素含量、类胡萝卜素含量及结实率均显著降低。遗传分析表明,该突变表型受1对隐性核基因控制,非T-DNA插入引起。为了克隆WSLWP基因,利用wslwp突变体与籼稻品种龙特甫B杂交获得的F2分离群体进行基因定位,首先将该基因定位于水稻第7染色体上的SSR标记RM5711与RM6574之间。随后,利用已有的SSR标记和开发的STS标记,进一步将该基因定位在STS7-63和STS7-65之间,物理距离约为87kb。展开更多
基金supported by the grants from the National High Technology Research and Development Program of China(Grant No.2011AA10A101)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y12C13003)the National Natural Science Foundation of China(Grant No.31201193)
文摘A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.
基金supported by the National Natural Science Foundation of China(Grant No.30971552)Shanghai Municipal Education Commission of China(Grant No.09YZ167)+1 种基金Shanghai Municipal Science and Technology Commission of China(Grant Nos.08PJ14085,9391912300 and 09DJ1400505)the Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(Grant No.J50401)
文摘A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phenotype of white stripe on the 3rd and 4th leaves, but began to turn normal green on the 5th leaf when grown at low temperatures (20℃ and 24℃). Furthermore, the content of total chlorophyll showed an obvious decrease in the leaves with white stripe. These results suggest that the expression of the mutant trait was thermo-sensitive and correlated with the leaf age of seedlings. The genetic analysis indicated that the mutant trait was controlled by a single recessive nuclear gene, designated as tws. In addition, by using SSR markers and an F2 segregating population derived from the cross between the tws mutant and 9311, tws was mapped between the markers MM3907 and MM3928 with a physical distance of 86 kb on dce chromosome 4.
基金supported by the Key Program of the Development of Variety of Genetically Modified Organisms(Grant Nos.2009ZX08001-019B and 2008ZX08001-006)the Special Program for Rice Scientific Research of Ministry of Agriculture(Grant No.nyhyzx 07-001-006)+1 种基金the Key Support Program of Science and Technology of Jiangsu Province(Grant No.BE2008354)the Self-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province,China(Grant No.CX[09]634)
文摘A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR) marker tightly linked with Stv-b' and a cleaved amplified polymorphic sequence (CAPS) marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding.
文摘叶色突变是一类十分明显的性状突变,在高等植物的叶绿素合成、叶绿体结构、功能、遗传、分化与发育等基础研究中均具有重要意义。到目前为止,已鉴定多个重要的水稻功能基因,据不完全统计,水稻中至少已定位了79个叶色突变位点,并已成功克隆出多个叶色相关基因,其中OsCHLH、OsCAO1、OsCAO2、chlorina1、chlorina9、ygl等直接参与编码叶绿素合成,其余基因均参与叶绿体发育调控。在日本晴(Nipponbare)T-DNA插入突变体库中筛选到一份对温度敏感的白条纹突变体gws(green-white-stripe),遗传分析表明它来自组织培养过程中的单隐性基因突变。利用gws与培矮64杂交组合的F2代群体,将Gws精细定位于第6染色体标记InDel15和InDel16之间,物理距离为73kb,此区间内包含13个基因。基因组序列分析发现,突变体在核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain,RNRS1)编码区第314~315碱基发生缺失,第316~317碱基由GC变为TT,导致该基因阅读框移码突变,蛋白质翻译提前终止。该基因是已经报道的水稻白条纹叶基因St1(Stripe1)的等位基因,gws突变体较st1突变体的白条纹出现早且明显,gws白条纹表型出现在第2片叶之后,而st1的白条纹表型仅出现在第4或5片叶之后。
文摘为研究叶绿体的差异性发育,本文通过60Co-γ诱变籼稻93-11筛选获得条白叶片和白穗突变体。经遗传分析表明,该突变性状受单隐性核基因控制,暂命名为St-wp(stripe white leaf and white panicle)。突变基因St-wp被精细定位于第6染色体标记d CAMPs620和In Del620之间,物理距离为9.2kb,此区间内包含3个候选基因。测序对比发现,突变体基因组的核糖核苷二磷酸还原酶小亚基(ribonucleoside-diphosphate reductase small chain)编码区第308碱基由A变为T,导致谷氨酸突变为缬氨酸。该基因与已报道的水稻白条纹叶基因St1和Gws等位,但突变体st1和gws均未表现出白穗性状。本研究可为叶绿体组织差异性发育的深入研究提供依据。
文摘从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结果,将该突变体定名为wslwp(white striped leaf and white panicle)。与野生型相比,wslwp突变体2叶期及抽穗期叶片的叶绿素含量、类胡萝卜素含量及结实率均显著降低。遗传分析表明,该突变表型受1对隐性核基因控制,非T-DNA插入引起。为了克隆WSLWP基因,利用wslwp突变体与籼稻品种龙特甫B杂交获得的F2分离群体进行基因定位,首先将该基因定位于水稻第7染色体上的SSR标记RM5711与RM6574之间。随后,利用已有的SSR标记和开发的STS标记,进一步将该基因定位在STS7-63和STS7-65之间,物理距离约为87kb。