The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub...The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si-Mn steel with the help of quenching&partitioning(Q&P)concept to address these issues.Compared this method with the conventional compact strip production(CSP)process,the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were in-vestigated.The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite,while the initial structure of the CSP sample consists of pearlite and ferrite.The volume fraction and carbon content of retained austenite(RA)in DSC samples are usually higher than those in CSP samples after the same Q&P treatment.DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample.The DSC sample partitioned at 300℃ for 300 s(DSC-Pt300)achieves the best comprehensive mechanical properties,with yield strength(YS)of 1282 MPa,ultimate tensile strength(UTS)of 1501 MPa,total elongation(TE)of 21.5%,and product of strength and elongation(PSE)as high as 32.3 GPa·%.These results indicate that the excellent mechanical properties in low-alloy Si-Mn steel can be obtained through a simple process(DSC-Q&P),which also demonstrates the superiority of DSC technology in manufacturing AHSSs.展开更多
Direct strip casting(DSC)is one of the cutting-edge technologies for the steel industry in the twenty-first century.Under the background of carbon peak and carbon neutrality,DSC technology has a bright future of appli...Direct strip casting(DSC)is one of the cutting-edge technologies for the steel industry in the twenty-first century.Under the background of carbon peak and carbon neutrality,DSC technology has a bright future of applications as it requires less production time and space with reduced energy consumption.Owing to its sub-rapid cooling rate during solidification and low reduction during hot rolling,DSC process exhibits a series of unique physical metallurgy characteristics.The process characteristics of DSC process and the microstructural evolution during the thermomechanical processing of low-carbon microalloyed steel are reviewed.The effects of hot rolling,cooling,coiling temperatures and microalloying elements on the microstructure and mechanical properties are then discussed.Finally,the future development orientations of DSC technology are suggested to fully utilize its unique features for the enhancement of its competitiveness and for the promotion of carbon neutrality of the steel industry.展开更多
The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication(GEM) detector with sensitive area of 50mm×50mm. A gradient of the inter-foil distance is introduced ...The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication(GEM) detector with sensitive area of 50mm×50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors.展开更多
By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer,we propose a kind of Mach-Zehnder interferometer(MZI) electro-optic(EO) switch operated at 1 550 nm.Struc...By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer,we propose a kind of Mach-Zehnder interferometer(MZI) electro-optic(EO) switch operated at 1 550 nm.Structural parameters are optimized for realizing normal switching function.Dependencies of switching characteristics on the slot waveguide parameters are investigated.For the silicon strip with dimension of 170 nm×300 nm,as the slot width varies from 50 nm to 100 nm,the switching voltage can be as low as 1.0 V with active region length of only 0.17–0.35 mm,and the length of the whole device is only about 770–950 μm.The voltage-length product of this switching structure is only 0.17–0.35 V·mm,and it is at least 19–40 times smaller than that of the traditional polymer MZI EO switch,which is 6.69 V·mm.Compared with our previously reported MZI EO switches,this switch exhibits some superior characteristics,including low switching voltage,compact device size and small wavelength dependency.展开更多
An electromagnetically induced transparency(EIT) in metamaterial resonator with two bright modes and one dark mode at the terahertz(THz) band is numerically and experimentally demonstrated. Different from two kinds of...An electromagnetically induced transparency(EIT) in metamaterial resonator with two bright modes and one dark mode at the terahertz(THz) band is numerically and experimentally demonstrated. Different from two kinds of the traditional passive modulations, our design can realize the passive modulation of EIT phenomenon by adding another bright mode resonator. Simulated and experimental results show that the transmission peak varies for incident THz waves with different polarization directions due to its asymmetric structure, which provides a novel way to realize high efficiency switch and modulation.展开更多
基金supported by the National Natural Science Foundation of China(No.52130408)the Natural Science Foundation of Hunan Province,China(No.2022JJ10081).
文摘The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si-Mn steel with the help of quenching&partitioning(Q&P)concept to address these issues.Compared this method with the conventional compact strip production(CSP)process,the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were in-vestigated.The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite,while the initial structure of the CSP sample consists of pearlite and ferrite.The volume fraction and carbon content of retained austenite(RA)in DSC samples are usually higher than those in CSP samples after the same Q&P treatment.DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample.The DSC sample partitioned at 300℃ for 300 s(DSC-Pt300)achieves the best comprehensive mechanical properties,with yield strength(YS)of 1282 MPa,ultimate tensile strength(UTS)of 1501 MPa,total elongation(TE)of 21.5%,and product of strength and elongation(PSE)as high as 32.3 GPa·%.These results indicate that the excellent mechanical properties in low-alloy Si-Mn steel can be obtained through a simple process(DSC-Q&P),which also demonstrates the superiority of DSC technology in manufacturing AHSSs.
文摘Direct strip casting(DSC)is one of the cutting-edge technologies for the steel industry in the twenty-first century.Under the background of carbon peak and carbon neutrality,DSC technology has a bright future of applications as it requires less production time and space with reduced energy consumption.Owing to its sub-rapid cooling rate during solidification and low reduction during hot rolling,DSC process exhibits a series of unique physical metallurgy characteristics.The process characteristics of DSC process and the microstructural evolution during the thermomechanical processing of low-carbon microalloyed steel are reviewed.The effects of hot rolling,cooling,coiling temperatures and microalloying elements on the microstructure and mechanical properties are then discussed.Finally,the future development orientations of DSC technology are suggested to fully utilize its unique features for the enhancement of its competitiveness and for the promotion of carbon neutrality of the steel industry.
基金Supported by National Natural Science Foundation of China(11375094,U1332207,11120101004)by Tsinghua University Initiative Scientific Research Program
文摘The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication(GEM) detector with sensitive area of 50mm×50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors.
基金supported by the National Natural Science Foundation of China(Nos.61107021,61177027 and 61077074)the Ministry of Education of China(Nos.20110061120052 and 20120061130008)the Science and Technology Department of Jilin Province of China(No.20130522161JH)
文摘By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer,we propose a kind of Mach-Zehnder interferometer(MZI) electro-optic(EO) switch operated at 1 550 nm.Structural parameters are optimized for realizing normal switching function.Dependencies of switching characteristics on the slot waveguide parameters are investigated.For the silicon strip with dimension of 170 nm×300 nm,as the slot width varies from 50 nm to 100 nm,the switching voltage can be as low as 1.0 V with active region length of only 0.17–0.35 mm,and the length of the whole device is only about 770–950 μm.The voltage-length product of this switching structure is only 0.17–0.35 V·mm,and it is at least 19–40 times smaller than that of the traditional polymer MZI EO switch,which is 6.69 V·mm.Compared with our previously reported MZI EO switches,this switch exhibits some superior characteristics,including low switching voltage,compact device size and small wavelength dependency.
基金supported by the National Basic Research Program of China(No.2014CB339800)the National Natural Science Foundation of China(Nos.61671491 and 61505088)+2 种基金the Natural Science Foundation of Tianjin(No.15JCQNJC02100)the Science and Technology Program of Tianjin(No.13RCGFGX01127)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20131201120004)
文摘An electromagnetically induced transparency(EIT) in metamaterial resonator with two bright modes and one dark mode at the terahertz(THz) band is numerically and experimentally demonstrated. Different from two kinds of the traditional passive modulations, our design can realize the passive modulation of EIT phenomenon by adding another bright mode resonator. Simulated and experimental results show that the transmission peak varies for incident THz waves with different polarization directions due to its asymmetric structure, which provides a novel way to realize high efficiency switch and modulation.