BACKGROUND: Studies of several animal models of central nervous system diseases have shown that neural progenitor cells (NPCs) can migrate to injured tissues. Stromal cell-derived factor 1 alpha (SDF-la), and its...BACKGROUND: Studies of several animal models of central nervous system diseases have shown that neural progenitor cells (NPCs) can migrate to injured tissues. Stromal cell-derived factor 1 alpha (SDF-la), and its primary physiological receptor CXCR4, have been shown to contribute to this process. OBJECTIVE: To investigate migration efficacy of human NPCs toward a SDF-1α gradient, and the regulatory roles of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in SDF-1α/CXCR4 axis-induced migration of NPCs. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, cellular and molecular biology study was performed at the Laboratory of Department of Cell Biology, Medical College of Soochow University between October 2005 and November 2007. MATERIALS: SDF-1α and mouse anti-human CXCR4 fusion antibody were purchased from R&D Systems, USA. TNF-αwas purchased from Biomyx Technology, USA and IL-8 was kindly provided by the Biotechnology Research Institute of Soochow University. METHODS: NPCs isolated from forebrain tissue of 9 to 10-week-old human fetuses were cultured in vitro. The cells were incubated with 0, 20, and 40 ng/mL TNF-α, or 0, 20, and 40 ng/mL IL-8, for 48 hours prior to migration assay. For antibody-blocking experiments, cells were further pretreated with 0, 20, and 40 μg/mL mouse anti-human CXCR4 fusion antibody for 2 hours. Subsequently, the transwell assay and CXCR4 blockade experiments were performed to evaluate migration of human NPCs toward a SDF-1α gradient. Serum-free culture medium without SDF-1α served as the negative control. MAIN OUTCOME MEASURES: The transwell assay was performed to evaluate migration of human NPCs toward a SDF-1α gradient, which was blocked by fusion antibody against CXCR4. In addition, CXCR4 expression in human NPCs stimulated by TNF-α and IL-8 was measured by flow cytometry. RESULTS: Results from the transwell assay demonstrated that SDF-1α was a strong chemoattractant for human NPCs (P 〈 0.01), and 20 ng/mL produced the highest levels of migration. Anti-human CXCR4 fusion antibody significantly blocked the chemotactic effect (P 〈 0.05). Flow cytometry results showed that treatment with TNF-α and IL-8 resulted in increased CXCR4 expression and greater chemotaxis efficiency of NPCs towards SDF-1α(P 〈 0.01). CONCLUSION: These results demonstrated that SDF-la significantly attracted NPCs in vitro, and neutralizing anti-CXCR4 antibody could block part of this chemotactic function. TNF-α and IL-8 increased chemotaxis efficiency of NPCs towards the SDF-1αgradient by upregulating CXCR4 expression in NPCs.展开更多
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,ch...Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014.展开更多
BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contrib...BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α(SDF-1α) and its receptor CX-C chemokine receptor type 4(CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells(NPSCs).METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups.Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Realtime RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1αnot only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement.Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.展开更多
Background Vascular endothelial growth factor (VEGF) is one of major mediators of angiogenesis and survival factor in some tissue, however, its direct effects on cardiomyocytes remain poorly understood. Methods Rat ...Background Vascular endothelial growth factor (VEGF) is one of major mediators of angiogenesis and survival factor in some tissue, however, its direct effects on cardiomyocytes remain poorly understood. Methods Rat neonatal ventricular myocytes were cultured in vitro. Akt phosphorylation was measured by Western blotting; the expression of stromal cell-derived factor α(SDF-1α)/CXCR4 axis was evaluated by real-time PCR and Western blotting. LY294002 and AMD3100 were used to interfere with the signaling of VEGF and SDF-1α/CXCR4 axis. Cardiac myocytes viability and injury were evaluated by trypan blue staining and lactate dehydrogenase (LDH) release. Results Treatment of neonatal rat ventricular myocytes with VEGF induced phosphorylation of Akt in a dose and FIk-1 dependent manner. VEGF attenuated H202 induced cardiac myocyte death. The phosphoinositol-3-kinase (PI3K) inhibitor, LY294002 and FIk-1 antibody abolished the beneficial effects of VEGF on H202 induced cell death. In the mean time SDF-1α-CXCR4 axis was up-regulated by VEGF through PI3K-Akt signaling and contributed to the protective effects of VEGF on H202 induced cell death. Interestingly, SDF-1α also promoted production of VEGF in cultured cardiac myocytes and LY294002 reversed the up-reguLation of VEGF induced by SDF-1α. Conclusion VEGF has direct protective effects on cardiomyocytes; a crosstalk between VEGF and SDF-1α through PI3K-Akt serves a survival role in cardiomvocvtes in vitro.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SD...BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SDF-1αon cartilage differentiation remain largely unknown.Identifying the specific regulatory effects of SDF-1αon MSCs will provide a useful target for the treatment of degenerative articular diseases.AIM To explore the role and mechanism of SDF-1αin cartilage differentiation of MSCs and primary chondrocytes.METHODS The expression level of C-X-C chemokine receptor 4(CXCR4)in MSCs was assessed by immunofluorescence.MSCs treated with SDF-1αwere stained for alkaline phosphatase(ALP)and with Alcian blue to observe differentiation.Western blot analysis was used to examine the expression of SRY-box transcription factor 9,aggrecan,collagen II,runt-related transcription factor 2,collagen X,and matrix metalloproteinase(MMP)13 in untreated MSCs,of aggrecan,collagen II,collagen X,and MMP13 in SDF-1α-treated primary chondrocytes,of glycogen synthase kinase 3β(GSK3β)p-GSK3βandβ-catenin expression in SDF-1α-treated MSCs,and of aggrecan,collagen X,and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001(SDF-1αinhibitor).RESULTS Immunofluorescence showed CXCR4 expression in the membranes of MSCs.ALP stain was intensified in MSCs treated with SDF-1αfor 14 d.The SDF-1αtreatment promoted expression of collagen X and MMP13 during cartilage differentiation,whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs.Further,those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes.SDF-1αpromoted the expression of p-GSK3βandβ-catenin in MSCs.And,finally,inhibition of this pathway by ICG-001(5μmol/L)neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.CONCLUSION SDF-1αmay promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway.These findings provide further evidence for the use of MSCs and SDF-1αin the treatment of cartilage degeneration and osteoarthritis.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The reg...BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.展开更多
BACKGROUND The importance of early diagnosis of alcoholic liver disease underscores the need to seek better and especially non-invasive diagnostic procedures.Leukocyte cellderived chemotaxin-2(LECT2)has been widely st...BACKGROUND The importance of early diagnosis of alcoholic liver disease underscores the need to seek better and especially non-invasive diagnostic procedures.Leukocyte cellderived chemotaxin-2(LECT2)has been widely studied to determine its usefulness in monitoring the course of non-alcoholic fatty liver disease but not for alcoholic liver cirrhosis(ALC).AIM To determine the concentration of LECT2 in the blood serum of patients in relation to progressive stages of ALC,its relation to fibroblast growth factor 1(FGF-1)and FGF-21,and to examine the possible wider use of LECT2 in diagnosing ALC.METHODS A retrospective case-control study was conducted with 69 ALC cases and 17 controls with no ALC.Subjects were recruited from the region of Lublin(eastern Poland).Liver cirrhosis was diagnosed based on clinical features,history of heavy alcohol consumption,laboratory tests,and abdominal ultrasonography.The degree of ALC was evaluated according to Pugh-Child criteria(the Pugh-Child score).Blood was drawn and,after centrifugation,serum was collected for analysis.LECT2,FGF-1,and FGF-21 were determined using enzyme-linked immunosorbent assay kits.RESULTS The LECT2 Levels in the control group were 18.99±5.36 ng/mL.In the study groups,they declined with the progression of cirrhosis to 11.06±6.47 ng/mL in one group and to 8.06±5.74 ng/mL in the other(P<0.0001).Multiple comparison tests confirmed the statistically significant differences in LECT2 Levels between the control group and both test groups(P=0.006 and P<0.0001).FGF-21 Levels were 44.27±64.19 pg/mL in the first test group,45.4±51.69 pg/mL in the second(P=0.008),and 13.52±7.51 pg/mL in the control group.The difference between the control group and the second test group was statistically significant(P=0.007).CONCLUSION We suggest that LECT2 may be a non-invasive diagnostic factor for alcoholinduced liver cirrhosis.The usefulness of LECT2 for non-invasive monitoring of alcohol-induced liver cirrhosis was indirectly confirmed by the multiple regression model developed on the basis of our statistical analysis.展开更多
AIM: To estimate whether S-TI571 inhibits the expression of vascular endothelial growth factor (VEGF) in the gastrointestinal stromal tumor (GIST) cells. METHODS: We used GIST cell line, GIST-T1. It has a hetero...AIM: To estimate whether S-TI571 inhibits the expression of vascular endothelial growth factor (VEGF) in the gastrointestinal stromal tumor (GIST) cells. METHODS: We used GIST cell line, GIST-T1. It has a heterogenic 57-bp deletion in exon 11 to produce a mutated c-KIT, which results in constitutive activation of c-KIT. Cells were treated with/without STI571 or stem cell factor (SCF). Transcription and expression of VEGF were determined by RT-PCR and flow cytometry or Western blotting, respectively. Activated c-KIT was estimated by immunoprecipitation analysis. Cell viability was determined by PITT assay. RESULTS: Activation of c-KIT was inhibited by STI571 treatment. VEGF was suppressed at both the transcriptional and translational levels in a temporal and dose-dependent manner by STI571. SCF upregulated the expression of VEGF and it was inhibited by S-13571. STI571 also reduced the cell viability of the GIST-T1 cells, as determined by PTT assay. CONCLUSION: Activation of c-KIT in the GIST-T1 regulated the expression of VEGF and it was inhibited by ST571. STI571 has antitumor effects on the GIST cells with respect to not only the inhibition of cell growth, but also the suppression of VEGF expression.展开更多
BACKGROUND: Stromal derived factor-1 (SDF-1) is an efficacious leukocyte chemoattractant, which can attract lymphocytes and mononuclear cells from bloodstream into the site of inflammation. Emodin., an anthraquinone d...BACKGROUND: Stromal derived factor-1 (SDF-1) is an efficacious leukocyte chemoattractant, which can attract lymphocytes and mononuclear cells from bloodstream into the site of inflammation. Emodin., an anthraquinone derivative from Radix et Rhizoma Rhei, and baicalein, a flavone from Scutellaria baicalensis Georgi, both have been reported to possess anti-inflammatory activities. The expression pattern of SDF-1 in experimental acute pancreatitis (AP) and the effect of emodin or baicalein on that are not well defined. The present study aimed to investigate the effects of emodin and baicalein on pancreatic myeloperoxidase (MPO) activity (reflecting leukocyte sequestration) and cytokine production, as well as tissue SDF-1 expression in the setting of AP. METHODS: A :rat model of AP was induced by administration (of 5% sodium taurocholate through the biliopancreatic duct. The level of tumor necrosis factor-a (TNF-alpha), interleukin-6 (IL-6) and MPO in the pancreas, and serum amylase were tested by immunohistochemistry, ELISA and chromatometry. The expressions of SDF-1 alpha and SDF-1 beta were detected by real-time PCR, Western blotting, and immunohistochemistry. RESULT: Combination of emodin and baicalein significantly reduced pancreatic TNIP-alpha, IL-6 and MPO, and also inhibited pancreatic SDF-1 expression. CONCLUSIONS: The inhibition of SDF-1 expression by emodin and baicalein might contribute, in part at least, to the amelioration of pancreatic inflammation. The present study also shows benefits of simultaneous treatment of AP.展开更多
BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of ...BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of developing gastrointestinal tumors, including rare types such as GIST.CASE SUMMARY A 60-year-old male Chinese patient was diagnosed with NF-1 10 years ago and presented with upper abdominal discomfort and black stools. Endoscopic ultrasonography and an enhanced abdominal computed tomography scan revealed a mass located 4 cm from the muscular layer of the descending duodenum. A 59-year-old Chinese woman who was diagnosed with NF-1 25 years ago presented with sudden unconsciousness and black stools. Multiple masses in the duodenum were noted by echogastroscopy and an enhanced abdominal computed tomography scan. Both patients presented with cutaneous neurofibromas. The histologic examination of tumors from both patients revealed spindle cells and low mitotic activity. Immunohistochemically, the tumor cells showed strong positivity for KIT(CD117), DOG-1, CD34, and Dehydrogenase Complex Subunit B, and negativity for SMA, desmin, S-100, and β-catenin. None of the six tumors from two patients had KIT exon 9, 11, 13, or 17 or platelet-derived growth factor receptor α exon 12 or 18 mutation, which is a typical finding for sporadic GISTs. None of the six tumors from the two patients had a BRAFV600 E mutation. The patients were alive and well during the follow-up period(range:0.6-5 yr).CONCLUSION There have been only a few previous reports of GISTs associated with NF-1.Although GISTs associated with NF-1 have morphologic and immunohistochemical similarities with GISTs, the pathogenesis, incidence,genetic background, and prognosis are not completely known. A medical history of NF-1 in a patient who has gastrointestinal bleeding or anemia and an intraabdominal mass with nonspecific computed tomography features may help in diagnosing GIST by virtue of the well-known association of these two entities.Molecular genetic studies of cases indicated that GISTs in NF-1 patients have a different pathogenesis than sporadic GISTs.展开更多
To study the osteogenic potential of cultured bone marrow stromal cells transfected with transforming growth factor β 1 gene in vitro , cultured BMSCs were transfected with the complexes of pcDNA 3 TGF β ...To study the osteogenic potential of cultured bone marrow stromal cells transfected with transforming growth factor β 1 gene in vitro , cultured BMSCs were transfected with the complexes of pcDNA 3 TGF β 1 and Lipofectamine Reagent in vitro . The cell proliferation was detected by MTT method and the morphological features of transfected BMSCs was observed. ALP stains and PNP method were used to measure ALP activity. In addition, the collagen type Ⅰ propeptides and mineralized matrixes were examined by immunohistochemical staining and tetracycline fluorescence labeling respectively. The morphological and biological characters of the transfected BMSCs were similar to those of osteoblasts and the cell proliferation was promoted. The cell layer displayed strong positive reaction for ALP stains and immunohistochemical staining. ALP activity and collagen type Ⅰ expression increased remarkably after transfection. Mineralized matrixes formed earlier and more in transfected BMSCs as compared with control group. It is concluded that transfecting with TGF β 1 gene could promote the osteogenic potential of cultured BMSCs.展开更多
Approximately 80%-95%of gastrointestinal stromal tumors(GISTs)show positive staining for KIT,while the other 5%-20%show negative staining.If the tumor is negative for KIT,but is positive for CD34,a histological diagno...Approximately 80%-95%of gastrointestinal stromal tumors(GISTs)show positive staining for KIT,while the other 5%-20%show negative staining.If the tumor is negative for KIT,but is positive for CD34,a histological diagnosis is possible.However,if the tumor is negative for KIT,CD34,S-100,and SMA,a definitive diagnosis is often challenging.Recently,Discovered on GIST-1(DOG1)has received considerable attention as a useful molecule for the diagnosis of GIST.DOG1,a membrane channel protein,is known to be overexpressed in GIST.Because the sensitivity and specificity of DOG1 are higher than those of KIT,positive staining for DOG1has been reported,even in KIT-negative GISTs.KITnegative GISTs most commonly arise in the stomach and are mainly characterized by epithelioid features histologically.We describe our experience with a rare case of a KIT-negative GIST of the stomach that was diagnosed by positive immunohistochemical staining for DOG1 in a patient who presented with severe anemia.Our findings suggest that immunohistochemical staining for DOG1,in addition to gene analysis,is useful for the diagnosis of KIT-negative tumors that are suspected to be GISTs.展开更多
基金the National Natural Science Foundation of China,No.30671041the National Basic Research Program of China(973 Program),No. 2005CB623902
文摘BACKGROUND: Studies of several animal models of central nervous system diseases have shown that neural progenitor cells (NPCs) can migrate to injured tissues. Stromal cell-derived factor 1 alpha (SDF-la), and its primary physiological receptor CXCR4, have been shown to contribute to this process. OBJECTIVE: To investigate migration efficacy of human NPCs toward a SDF-1α gradient, and the regulatory roles of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in SDF-1α/CXCR4 axis-induced migration of NPCs. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, cellular and molecular biology study was performed at the Laboratory of Department of Cell Biology, Medical College of Soochow University between October 2005 and November 2007. MATERIALS: SDF-1α and mouse anti-human CXCR4 fusion antibody were purchased from R&D Systems, USA. TNF-αwas purchased from Biomyx Technology, USA and IL-8 was kindly provided by the Biotechnology Research Institute of Soochow University. METHODS: NPCs isolated from forebrain tissue of 9 to 10-week-old human fetuses were cultured in vitro. The cells were incubated with 0, 20, and 40 ng/mL TNF-α, or 0, 20, and 40 ng/mL IL-8, for 48 hours prior to migration assay. For antibody-blocking experiments, cells were further pretreated with 0, 20, and 40 μg/mL mouse anti-human CXCR4 fusion antibody for 2 hours. Subsequently, the transwell assay and CXCR4 blockade experiments were performed to evaluate migration of human NPCs toward a SDF-1α gradient. Serum-free culture medium without SDF-1α served as the negative control. MAIN OUTCOME MEASURES: The transwell assay was performed to evaluate migration of human NPCs toward a SDF-1α gradient, which was blocked by fusion antibody against CXCR4. In addition, CXCR4 expression in human NPCs stimulated by TNF-α and IL-8 was measured by flow cytometry. RESULTS: Results from the transwell assay demonstrated that SDF-1α was a strong chemoattractant for human NPCs (P 〈 0.01), and 20 ng/mL produced the highest levels of migration. Anti-human CXCR4 fusion antibody significantly blocked the chemotactic effect (P 〈 0.05). Flow cytometry results showed that treatment with TNF-α and IL-8 resulted in increased CXCR4 expression and greater chemotaxis efficiency of NPCs towards SDF-1α(P 〈 0.01). CONCLUSION: These results demonstrated that SDF-la significantly attracted NPCs in vitro, and neutralizing anti-CXCR4 antibody could block part of this chemotactic function. TNF-α and IL-8 increased chemotaxis efficiency of NPCs towards the SDF-1αgradient by upregulating CXCR4 expression in NPCs.
基金supported by the National Natural Science Foundation of China,No.81241126(to XLD)and 81360197(to XLD)a grant from the Department of Science and Technology of Kunming Medical University in China,No.2013C227(to XLD)the Joint Special Fund for the Department of Science and Technology of Kunming Medical University in China,No.2014FB041(to XBS)
文摘Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson’s disease,but its specific mechanism of action is still unclear.Stromal cell-derived factor-1 and its receptor,chemokine receptor 4(CXCR4),are important regulators of cell migration.We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson’s disease.A Parkinson’s disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway,and then treated with 5μL of neural stem cell suspension(1.5×104/L)in the right substantia nigra.Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation.Parkinson-like behavior in rats was detected using apomorphine-induced rotation.Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Using quantitative real-time polymerase chain reaction,the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured.In addition,western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4.Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation,increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra,and enhanced the immunoreactivity of tyrosine hydroxylase,CXCR4,and stromal cell-derived factor-1 in the brain.Injection of AMD3100 inhibited the aforementioned effects.These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson’s disease.This study was approved by the Animal Care and Use Committee of Kunming Medical University,China(approval No.SYXKK2015-0002)on April 1,2014.
基金the National Natural Science Foundation of China,No.81772399
文摘BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α(SDF-1α) and its receptor CX-C chemokine receptor type 4(CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells(NPSCs).METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups.Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Realtime RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1αnot only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement.Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30600580).
文摘Background Vascular endothelial growth factor (VEGF) is one of major mediators of angiogenesis and survival factor in some tissue, however, its direct effects on cardiomyocytes remain poorly understood. Methods Rat neonatal ventricular myocytes were cultured in vitro. Akt phosphorylation was measured by Western blotting; the expression of stromal cell-derived factor α(SDF-1α)/CXCR4 axis was evaluated by real-time PCR and Western blotting. LY294002 and AMD3100 were used to interfere with the signaling of VEGF and SDF-1α/CXCR4 axis. Cardiac myocytes viability and injury were evaluated by trypan blue staining and lactate dehydrogenase (LDH) release. Results Treatment of neonatal rat ventricular myocytes with VEGF induced phosphorylation of Akt in a dose and FIk-1 dependent manner. VEGF attenuated H202 induced cardiac myocyte death. The phosphoinositol-3-kinase (PI3K) inhibitor, LY294002 and FIk-1 antibody abolished the beneficial effects of VEGF on H202 induced cell death. In the mean time SDF-1α-CXCR4 axis was up-regulated by VEGF through PI3K-Akt signaling and contributed to the protective effects of VEGF on H202 induced cell death. Interestingly, SDF-1α also promoted production of VEGF in cultured cardiac myocytes and LY294002 reversed the up-reguLation of VEGF induced by SDF-1α. Conclusion VEGF has direct protective effects on cardiomyocytes; a crosstalk between VEGF and SDF-1α through PI3K-Akt serves a survival role in cardiomvocvtes in vitro.
基金Supported by Henan Provincial Natural Science Foundation of China,No.212300410242Youth Project Jointly Constructed by Henan Provincial Health Commission and the Ministry,No.SBGJ202103008Henan Young and Middle-aged Health Science and Technology Innovation Excellent Youth Talent Training Project of China,No.YXKC2021047.
文摘BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SDF-1αon cartilage differentiation remain largely unknown.Identifying the specific regulatory effects of SDF-1αon MSCs will provide a useful target for the treatment of degenerative articular diseases.AIM To explore the role and mechanism of SDF-1αin cartilage differentiation of MSCs and primary chondrocytes.METHODS The expression level of C-X-C chemokine receptor 4(CXCR4)in MSCs was assessed by immunofluorescence.MSCs treated with SDF-1αwere stained for alkaline phosphatase(ALP)and with Alcian blue to observe differentiation.Western blot analysis was used to examine the expression of SRY-box transcription factor 9,aggrecan,collagen II,runt-related transcription factor 2,collagen X,and matrix metalloproteinase(MMP)13 in untreated MSCs,of aggrecan,collagen II,collagen X,and MMP13 in SDF-1α-treated primary chondrocytes,of glycogen synthase kinase 3β(GSK3β)p-GSK3βandβ-catenin expression in SDF-1α-treated MSCs,and of aggrecan,collagen X,and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001(SDF-1αinhibitor).RESULTS Immunofluorescence showed CXCR4 expression in the membranes of MSCs.ALP stain was intensified in MSCs treated with SDF-1αfor 14 d.The SDF-1αtreatment promoted expression of collagen X and MMP13 during cartilage differentiation,whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs.Further,those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes.SDF-1αpromoted the expression of p-GSK3βandβ-catenin in MSCs.And,finally,inhibition of this pathway by ICG-001(5μmol/L)neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.CONCLUSION SDF-1αmay promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway.These findings provide further evidence for the use of MSCs and SDF-1αin the treatment of cartilage degeneration and osteoarthritis.
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs)are typical gastrointestinal tract neoplasms.Imatinib is the first-line therapy for GIST patients.Drug resistance limits the long-term effectiveness of imatinib.The regulatory effect of insulin-like growth factor 2(IGF2)has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis.AIM To further investigate the mechanism of IGF2 specific to GISTs.METHODS IGF2 was screened and analyzed using Gene Expression Omnibus(GEO:GSE225819)data.After IGF2 knockdown or overexpression by transfection,the phenotypes(proliferation,migration,invasion,apoptosis)of GIST cells were characterized by cell counting kit 8,Transwell,and flow cytometry assays.We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition(EMT)-associated proteins.We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST.RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs,associated with liver metastasis,and closely related to drug resistance.GIST cells with high expression of IGF2 had increased proliferation and migration,invasiveness and EMT.Knockdown of IGF2 significantly inhibited those activities.In addition,OEIGF2 promoted GIST metastasis in vivo in nude mice.IGF2 activated IGF1R signaling in GIST cells,and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis.GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance.Moreover,2-deoxy-D-glucose(a glycolysis inhibitor)treatment reversed IGF2 overexpressionmediated imatinib resistance in GISTs.CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.
基金Supported by the Grant from the Medical University of Lublin,No. DS 507/2013–2015
文摘BACKGROUND The importance of early diagnosis of alcoholic liver disease underscores the need to seek better and especially non-invasive diagnostic procedures.Leukocyte cellderived chemotaxin-2(LECT2)has been widely studied to determine its usefulness in monitoring the course of non-alcoholic fatty liver disease but not for alcoholic liver cirrhosis(ALC).AIM To determine the concentration of LECT2 in the blood serum of patients in relation to progressive stages of ALC,its relation to fibroblast growth factor 1(FGF-1)and FGF-21,and to examine the possible wider use of LECT2 in diagnosing ALC.METHODS A retrospective case-control study was conducted with 69 ALC cases and 17 controls with no ALC.Subjects were recruited from the region of Lublin(eastern Poland).Liver cirrhosis was diagnosed based on clinical features,history of heavy alcohol consumption,laboratory tests,and abdominal ultrasonography.The degree of ALC was evaluated according to Pugh-Child criteria(the Pugh-Child score).Blood was drawn and,after centrifugation,serum was collected for analysis.LECT2,FGF-1,and FGF-21 were determined using enzyme-linked immunosorbent assay kits.RESULTS The LECT2 Levels in the control group were 18.99±5.36 ng/mL.In the study groups,they declined with the progression of cirrhosis to 11.06±6.47 ng/mL in one group and to 8.06±5.74 ng/mL in the other(P<0.0001).Multiple comparison tests confirmed the statistically significant differences in LECT2 Levels between the control group and both test groups(P=0.006 and P<0.0001).FGF-21 Levels were 44.27±64.19 pg/mL in the first test group,45.4±51.69 pg/mL in the second(P=0.008),and 13.52±7.51 pg/mL in the control group.The difference between the control group and the second test group was statistically significant(P=0.007).CONCLUSION We suggest that LECT2 may be a non-invasive diagnostic factor for alcoholinduced liver cirrhosis.The usefulness of LECT2 for non-invasive monitoring of alcohol-induced liver cirrhosis was indirectly confirmed by the multiple regression model developed on the basis of our statistical analysis.
文摘AIM: To estimate whether S-TI571 inhibits the expression of vascular endothelial growth factor (VEGF) in the gastrointestinal stromal tumor (GIST) cells. METHODS: We used GIST cell line, GIST-T1. It has a heterogenic 57-bp deletion in exon 11 to produce a mutated c-KIT, which results in constitutive activation of c-KIT. Cells were treated with/without STI571 or stem cell factor (SCF). Transcription and expression of VEGF were determined by RT-PCR and flow cytometry or Western blotting, respectively. Activated c-KIT was estimated by immunoprecipitation analysis. Cell viability was determined by PITT assay. RESULTS: Activation of c-KIT was inhibited by STI571 treatment. VEGF was suppressed at both the transcriptional and translational levels in a temporal and dose-dependent manner by STI571. SCF upregulated the expression of VEGF and it was inhibited by S-13571. STI571 also reduced the cell viability of the GIST-T1 cells, as determined by PTT assay. CONCLUSION: Activation of c-KIT in the GIST-T1 regulated the expression of VEGF and it was inhibited by ST571. STI571 has antitumor effects on the GIST cells with respect to not only the inhibition of cell growth, but also the suppression of VEGF expression.
基金supported by a grant from the National Natural Science Foundation of China (No. 30500688)
文摘BACKGROUND: Stromal derived factor-1 (SDF-1) is an efficacious leukocyte chemoattractant, which can attract lymphocytes and mononuclear cells from bloodstream into the site of inflammation. Emodin., an anthraquinone derivative from Radix et Rhizoma Rhei, and baicalein, a flavone from Scutellaria baicalensis Georgi, both have been reported to possess anti-inflammatory activities. The expression pattern of SDF-1 in experimental acute pancreatitis (AP) and the effect of emodin or baicalein on that are not well defined. The present study aimed to investigate the effects of emodin and baicalein on pancreatic myeloperoxidase (MPO) activity (reflecting leukocyte sequestration) and cytokine production, as well as tissue SDF-1 expression in the setting of AP. METHODS: A :rat model of AP was induced by administration (of 5% sodium taurocholate through the biliopancreatic duct. The level of tumor necrosis factor-a (TNF-alpha), interleukin-6 (IL-6) and MPO in the pancreas, and serum amylase were tested by immunohistochemistry, ELISA and chromatometry. The expressions of SDF-1 alpha and SDF-1 beta were detected by real-time PCR, Western blotting, and immunohistochemistry. RESULT: Combination of emodin and baicalein significantly reduced pancreatic TNIP-alpha, IL-6 and MPO, and also inhibited pancreatic SDF-1 expression. CONCLUSIONS: The inhibition of SDF-1 expression by emodin and baicalein might contribute, in part at least, to the amelioration of pancreatic inflammation. The present study also shows benefits of simultaneous treatment of AP.
基金Supported by National Natural Science Foundation of China,No.81601692Program of Liaoning Province Department of Education,No.LK2016002
文摘BACKGROUND Gastrointestinal stromal tumors(GISTs) associated with neurofibromatosis are uncommon compared to their gastrointestinal counterparts. Patients with neurofibromatosis type 1(NF-1) have an increased risk of developing gastrointestinal tumors, including rare types such as GIST.CASE SUMMARY A 60-year-old male Chinese patient was diagnosed with NF-1 10 years ago and presented with upper abdominal discomfort and black stools. Endoscopic ultrasonography and an enhanced abdominal computed tomography scan revealed a mass located 4 cm from the muscular layer of the descending duodenum. A 59-year-old Chinese woman who was diagnosed with NF-1 25 years ago presented with sudden unconsciousness and black stools. Multiple masses in the duodenum were noted by echogastroscopy and an enhanced abdominal computed tomography scan. Both patients presented with cutaneous neurofibromas. The histologic examination of tumors from both patients revealed spindle cells and low mitotic activity. Immunohistochemically, the tumor cells showed strong positivity for KIT(CD117), DOG-1, CD34, and Dehydrogenase Complex Subunit B, and negativity for SMA, desmin, S-100, and β-catenin. None of the six tumors from two patients had KIT exon 9, 11, 13, or 17 or platelet-derived growth factor receptor α exon 12 or 18 mutation, which is a typical finding for sporadic GISTs. None of the six tumors from the two patients had a BRAFV600 E mutation. The patients were alive and well during the follow-up period(range:0.6-5 yr).CONCLUSION There have been only a few previous reports of GISTs associated with NF-1.Although GISTs associated with NF-1 have morphologic and immunohistochemical similarities with GISTs, the pathogenesis, incidence,genetic background, and prognosis are not completely known. A medical history of NF-1 in a patient who has gastrointestinal bleeding or anemia and an intraabdominal mass with nonspecific computed tomography features may help in diagnosing GIST by virtue of the well-known association of these two entities.Molecular genetic studies of cases indicated that GISTs in NF-1 patients have a different pathogenesis than sporadic GISTs.
文摘To study the osteogenic potential of cultured bone marrow stromal cells transfected with transforming growth factor β 1 gene in vitro , cultured BMSCs were transfected with the complexes of pcDNA 3 TGF β 1 and Lipofectamine Reagent in vitro . The cell proliferation was detected by MTT method and the morphological features of transfected BMSCs was observed. ALP stains and PNP method were used to measure ALP activity. In addition, the collagen type Ⅰ propeptides and mineralized matrixes were examined by immunohistochemical staining and tetracycline fluorescence labeling respectively. The morphological and biological characters of the transfected BMSCs were similar to those of osteoblasts and the cell proliferation was promoted. The cell layer displayed strong positive reaction for ALP stains and immunohistochemical staining. ALP activity and collagen type Ⅰ expression increased remarkably after transfection. Mineralized matrixes formed earlier and more in transfected BMSCs as compared with control group. It is concluded that transfecting with TGF β 1 gene could promote the osteogenic potential of cultured BMSCs.
文摘Approximately 80%-95%of gastrointestinal stromal tumors(GISTs)show positive staining for KIT,while the other 5%-20%show negative staining.If the tumor is negative for KIT,but is positive for CD34,a histological diagnosis is possible.However,if the tumor is negative for KIT,CD34,S-100,and SMA,a definitive diagnosis is often challenging.Recently,Discovered on GIST-1(DOG1)has received considerable attention as a useful molecule for the diagnosis of GIST.DOG1,a membrane channel protein,is known to be overexpressed in GIST.Because the sensitivity and specificity of DOG1 are higher than those of KIT,positive staining for DOG1has been reported,even in KIT-negative GISTs.KITnegative GISTs most commonly arise in the stomach and are mainly characterized by epithelioid features histologically.We describe our experience with a rare case of a KIT-negative GIST of the stomach that was diagnosed by positive immunohistochemical staining for DOG1 in a patient who presented with severe anemia.Our findings suggest that immunohistochemical staining for DOG1,in addition to gene analysis,is useful for the diagnosis of KIT-negative tumors that are suspected to be GISTs.