Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the...Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.展开更多
With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channe...With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-...Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.展开更多
Anti-jamming solutions based on antenna arrays enhance the anti-jamming ability and the robustness of global navigation satellite system(GNSS)receiver remarkably.However,the performance of the receiver will deteriorat...Anti-jamming solutions based on antenna arrays enhance the anti-jamming ability and the robustness of global navigation satellite system(GNSS)receiver remarkably.However,the performance of the receiver will deteriorate significantly in the overloaded interferences scenario.We define the overloaded interferences scenario as where the number of interferences is more than or equal to the number of antenna arrays elements.In this paper,the effect mechanism of interferences with different incident directions is found by studying the anti-jamming performance of the adaptive space filter.The theoretical analysis and conclusions,which are first validated through numerical examples,reveal the relationships between the optimal weight vector and the eigenvectors of the input signal autocorrelation matrix,the relationships between the interference cancellation ratio(ICR),the signal to interference and noise power ratio(SINR)of the adaptive space filter output and the number of interferences,the eigenvalues of the input signal autocorrelation matrix.In addition,two simulation experiments are utilized to further corroborate the theoretical findings through soft anti-jamming receiver.The simulation results match well with the theoretical analysis results,thus validating the effect mechanism of overloaded interferences.The simulation results show that,for a four elements circular array,the performance difference is up to 19 dB with different incident directions of interferences.Anti-jamming performance evaluation and jamming deployment optimization can obtain more accurate and efficient results by using the conclusions.展开更多
Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency ...Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency diverse array radar is proposed.By deriving the closed form of the phase center in a uniform line array FDA,we establish a model of the FDA signal based on adaptive weights and derive the effect of active anti-jamming in this regime.The pro-posed active anti-jamming method makes it difficult for jammers to detect or locate our radar.Fur-thermore,the effectiveness of the two frequency increment schemes in terms of anti-jamming is ana-lyzed by comparing the deviation of phase center.Finally,the simulation results verify the effective-ness and superiority of the proposed method.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving pow...This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.展开更多
A multiple-access networking scheme based on the new dynamic spectrum anti-jamming system is proposed in this paper. The network consists of a center node and multiple user nodes. The center node detects spectrum hole...A multiple-access networking scheme based on the new dynamic spectrum anti-jamming system is proposed in this paper. The network consists of a center node and multiple user nodes. The center node detects spectrum holes in the operation band periodically according to the user performance target. Detected spectrum holes are allocated to users who request communication. Throughput of this networking scheme is analyzed over a high-frequency(HF) interference channel. The effect of error correction coding and spectrum hole information transmission error is discussed. Throughput of this scheme and conventional frequency-hopping multiple-access(FHMA) scheme are compared. Results show that user performance increase leads to throughput decrease, which can be offset by error correction coding. If spectrum hole information transmission is in error, the throughput is not affected much as long as the bit error rate is below 10-2. Furthermore, throughput of this scheme is obviously superior to the throughput of FHMA scheme.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming mo...A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.展开更多
A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite s...A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite signal is unknown,the traditional subspace projection anti-jamming algorithm cannot form the correct beam pointing.To overcome the problem of the traditional subspace projection algorithm,multiple single-constrained subspace projection parallel filters are used.Every single-constrained anti-jamming subspace projection algorithm obtains the optimal weight vector by searching the DOA of the satellite signal and uses the output of cross correlation as a decision criterion.Test results show that the algorithm can suppress the jamming effectively,and generate high gain toward the desired signal.The research provides a new idea for the engineering implementation of a multi-beam anti-jamming algorithm based on subspace projection.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
Physical-layer security issues in wireless systems have attracted great attention.In this paper,we investigate the spectrum anti-jamming(AJ)problem for data transmissions between devices.Considering fast-changing phys...Physical-layer security issues in wireless systems have attracted great attention.In this paper,we investigate the spectrum anti-jamming(AJ)problem for data transmissions between devices.Considering fast-changing physical-layer jamming attacks in the time/frequency domain,frequency resources have to be configured for devices in advance with unknown jamming patterns(i.e.the time-frequency distribution of the jamming signals)to avoid jamming signals emitted by malicious devices.This process can be formulated as a Markov decision process and solved by reinforcement learning(RL).Unfortunately,stateof-the-art RL methods may put pressure on the system which has limited computing resources.As a result,we propose a novel RL,by integrating the asynchronous advantage actor-critic(A3C)approach with the kernel method to learn a flexible frequency pre-configuration policy.Moreover,in the presence of time-varying jamming patterns,the traditional AJ strategy can not adapt to the dynamic interference strategy.To handle this issue,we design a kernelbased feature transfer learning method to adjust the structure of the policy function online.Simulation results reveal that our proposed approach can significantly outperform various baselines,in terms of the average normalized throughput and the convergence speed of policy learning.展开更多
This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts bea...This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.展开更多
This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. T...This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. The system tests the width of the jamming pulse whose width is 100% bigger, 60% bigger and 100% smaller than the Radar signal’s respectively and show the SNR curve.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequen...Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.展开更多
基金supported by the Key Research and Development Program of Science&Technology Department of Sichuan Province(2021YFG0155)the Technical Innovation Fund of Southwest China Institute of Electronic Technology(H21004.2).
文摘Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.
基金This work was supported by the National Natural Science Foundation of China(62271192)Henan Provincial Scientists Studio(GZS2022015),Central Plains Talents Plan(ZYYCYU202012173)+8 种基金National Key R&D Program of China(2020YFB2008400)the Program of CEMEE(2022Z00202B)LAGEO of Chinese Academy of Sciences(LAGEO-2019-2)Program for Science&Technology Innovation Talents in the University of Henan Province(20HASTIT022)Natural Science Foundation of Henan under Grant 202300410126Program for Innovative Research Team in University of Henan Province(21IRTSTHN015)Equipment Pre-Research Joint Research Program of Ministry of Education(8091B032129)Training Program for Young Scholar of Henan Province forColleges andUniversities(2020GGJS172)Programfor Science&Technology Innovation Talents in Universities of Henan Province under Grand(22HASTIT020)and Henan Province Science Fund for Distinguished Young Scholars(222300420006).
文摘With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.
基金supported by the National Natural Science Foundation of China(62003354).
文摘Anti-jamming solutions based on antenna arrays enhance the anti-jamming ability and the robustness of global navigation satellite system(GNSS)receiver remarkably.However,the performance of the receiver will deteriorate significantly in the overloaded interferences scenario.We define the overloaded interferences scenario as where the number of interferences is more than or equal to the number of antenna arrays elements.In this paper,the effect mechanism of interferences with different incident directions is found by studying the anti-jamming performance of the adaptive space filter.The theoretical analysis and conclusions,which are first validated through numerical examples,reveal the relationships between the optimal weight vector and the eigenvectors of the input signal autocorrelation matrix,the relationships between the interference cancellation ratio(ICR),the signal to interference and noise power ratio(SINR)of the adaptive space filter output and the number of interferences,the eigenvalues of the input signal autocorrelation matrix.In addition,two simulation experiments are utilized to further corroborate the theoretical findings through soft anti-jamming receiver.The simulation results match well with the theoretical analysis results,thus validating the effect mechanism of overloaded interferences.The simulation results show that,for a four elements circular array,the performance difference is up to 19 dB with different incident directions of interferences.Anti-jamming performance evaluation and jamming deployment optimization can obtain more accurate and efficient results by using the conclusions.
基金the National Natural Science Foundation of China(No.61971438)the Natural Science Founda-tion of Shaanxi Province(No.2019JM-155).
文摘Due to the rapid development of electronic countermeasures(ECMs),the corresponding means of electronic counter countermeasures(ECCMs)are urgently needed.In this paper,an act-ive anti-jamming method based on frequency diverse array radar is proposed.By deriving the closed form of the phase center in a uniform line array FDA,we establish a model of the FDA signal based on adaptive weights and derive the effect of active anti-jamming in this regime.The pro-posed active anti-jamming method makes it difficult for jammers to detect or locate our radar.Fur-thermore,the effectiveness of the two frequency increment schemes in terms of anti-jamming is ana-lyzed by comparing the deviation of phase center.Finally,the simulation results verify the effective-ness and superiority of the proposed method.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
文摘This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.
文摘A multiple-access networking scheme based on the new dynamic spectrum anti-jamming system is proposed in this paper. The network consists of a center node and multiple user nodes. The center node detects spectrum holes in the operation band periodically according to the user performance target. Detected spectrum holes are allocated to users who request communication. Throughput of this networking scheme is analyzed over a high-frequency(HF) interference channel. The effect of error correction coding and spectrum hole information transmission error is discussed. Throughput of this scheme and conventional frequency-hopping multiple-access(FHMA) scheme are compared. Results show that user performance increase leads to throughput decrease, which can be offset by error correction coding. If spectrum hole information transmission is in error, the throughput is not affected much as long as the bit error rate is below 10-2. Furthermore, throughput of this scheme is obviously superior to the throughput of FHMA scheme.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金supported by the National Natural Science Foundation of China(The Key Research of Beidou Receiver based on SFT,61301089)
文摘A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.
基金Supported by the Natural Science Foundation of Hebei Province(F2011205023)the National Natural Science Foundation of China(61175059)。
文摘A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite signal is unknown,the traditional subspace projection anti-jamming algorithm cannot form the correct beam pointing.To overcome the problem of the traditional subspace projection algorithm,multiple single-constrained subspace projection parallel filters are used.Every single-constrained anti-jamming subspace projection algorithm obtains the optimal weight vector by searching the DOA of the satellite signal and uses the output of cross correlation as a decision criterion.Test results show that the algorithm can suppress the jamming effectively,and generate high gain toward the desired signal.The research provides a new idea for the engineering implementation of a multi-beam anti-jamming algorithm based on subspace projection.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金partially supported by the National Natural Science Foundation of China under Grant U2001210,61901216,61827801the Natural Science Foundation of Jiangsu Province under Grant BK20190400。
文摘Physical-layer security issues in wireless systems have attracted great attention.In this paper,we investigate the spectrum anti-jamming(AJ)problem for data transmissions between devices.Considering fast-changing physical-layer jamming attacks in the time/frequency domain,frequency resources have to be configured for devices in advance with unknown jamming patterns(i.e.the time-frequency distribution of the jamming signals)to avoid jamming signals emitted by malicious devices.This process can be formulated as a Markov decision process and solved by reinforcement learning(RL).Unfortunately,stateof-the-art RL methods may put pressure on the system which has limited computing resources.As a result,we propose a novel RL,by integrating the asynchronous advantage actor-critic(A3C)approach with the kernel method to learn a flexible frequency pre-configuration policy.Moreover,in the presence of time-varying jamming patterns,the traditional AJ strategy can not adapt to the dynamic interference strategy.To handle this issue,we design a kernelbased feature transfer learning method to adjust the structure of the policy function online.Simulation results reveal that our proposed approach can significantly outperform various baselines,in terms of the average normalized throughput and the convergence speed of policy learning.
基金supported by the National Natural Science Foundation of China under Grant No.61901523 and No.62071488.
文摘This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.
文摘This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. The system tests the width of the jamming pulse whose width is 100% bigger, 60% bigger and 100% smaller than the Radar signal’s respectively and show the SNR curve.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
基金Supported by the Natural Science Foundation of Hebei Province (F2010000442)
文摘Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.