A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional ...A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.展开更多
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-s...Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.展开更多
文摘A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921401)the Tsinghua University Initiative Scientific Research Programthe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.