Based on an explicit representation of moments of hitting times for single death processes, the criteria on ergodicity and strong ergodicity are obtained. These results can be applied for an extended class of branchin...Based on an explicit representation of moments of hitting times for single death processes, the criteria on ergodicity and strong ergodicity are obtained. These results can be applied for an extended class of branching processes. Meanwhile, some sufficient and necessary conditions for recurrence and exponential ergodicity as well as extinction probability for the processes are presented.展开更多
For an ergodic continuous-time Markov process with a particular state in its space,the authors provide the necessary and sufficient conditions for exponential and strong ergodicity in terms of the moments of the first...For an ergodic continuous-time Markov process with a particular state in its space,the authors provide the necessary and sufficient conditions for exponential and strong ergodicity in terms of the moments of the first hitting time on the state.An application to the queue length process of M/G/1 queue with multiple vacations is given.展开更多
We consider the exponentially ergodic properties of systems of SDEs in Rndriven by cylindrical stable processes,potentially with different indices across different coordinates.Our approach is based on the well-known F...We consider the exponentially ergodic properties of systems of SDEs in Rndriven by cylindrical stable processes,potentially with different indices across different coordinates.Our approach is based on the well-known Foster-Lyapunov criteria and a careful selection of Lyapunov functions,alongside recent advances in regularity and transition density estimates for solutions to SDEs driven by Lévy processes with independent coordinates.These results are novel,even in the one-dimensional case.Notably,our findings suggest that multiplicative cylindrical stable processes can enhance the ergodicity of the system when the stable noise indices in all directions fall within[1,2).展开更多
Abstract Let P be a transition matrix which is symmetric with respect to a measure π. The spectral gap of P in L2(π)-space, denoted by gap(P), is defined as the distance between 1 and the rest of the spectrum of...Abstract Let P be a transition matrix which is symmetric with respect to a measure π. The spectral gap of P in L2(π)-space, denoted by gap(P), is defined as the distance between 1 and the rest of the spectrum of P. In this paper, we study the relationship between gap(P) and the convergence rate of P^n. When P is transient, the convergence rate of pn is equal to 1 - gap(P). When P is ergodic, we give the explicit upper and lower bounds for the convergence rate of pn in terms of gap(P). These results are extended to L^∞ (π)-space.展开更多
The nonlinear branching process with immigration is constructed as the pathwise unique solution of a stochastic integral equation driven by Poisson random measures. Some criteria for the regularity, recurrence, ergodi...The nonlinear branching process with immigration is constructed as the pathwise unique solution of a stochastic integral equation driven by Poisson random measures. Some criteria for the regularity, recurrence, ergodicity and strong ergodicity of the process are then established.展开更多
In this paper, we consider Markov branching processes with killing and resurrection. We first show that the Markov branching process with killing and stable resurrection is just the Feller minimum process which is hon...In this paper, we consider Markov branching processes with killing and resurrection. We first show that the Markov branching process with killing and stable resurrection is just the Feller minimum process which is honest and thus unique. We then further show that this honest Feller minimum process is not only positive recurrent but also strongly ergodic. The generating function of the important stationary distribution is explicitly expressed. For the interest of comparison and completeness, the results of the Markov branching processes with killing and instantaneous resurrection are also briefly stated. A new result regarding strong ergodicity of this difficult case is presented. The birth and death process with killing and resurrection together with another example is also analyzed.展开更多
文摘Based on an explicit representation of moments of hitting times for single death processes, the criteria on ergodicity and strong ergodicity are obtained. These results can be applied for an extended class of branching processes. Meanwhile, some sufficient and necessary conditions for recurrence and exponential ergodicity as well as extinction probability for the processes are presented.
基金the National Natural Science Foundation of China(No.10671212)the Research Fund for the Doctoral Program of Higher Education(No.20050533036).
文摘For an ergodic continuous-time Markov process with a particular state in its space,the authors provide the necessary and sufficient conditions for exponential and strong ergodicity in terms of the moments of the first hitting time on the state.An application to the queue length process of M/G/1 queue with multiple vacations is given.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1006003)National Natural Science Foundation of China(Grant Nos.11831014,12071076,and 12225104)。
文摘We consider the exponentially ergodic properties of systems of SDEs in Rndriven by cylindrical stable processes,potentially with different indices across different coordinates.Our approach is based on the well-known Foster-Lyapunov criteria and a careful selection of Lyapunov functions,alongside recent advances in regularity and transition density estimates for solutions to SDEs driven by Lévy processes with independent coordinates.These results are novel,even in the one-dimensional case.Notably,our findings suggest that multiplicative cylindrical stable processes can enhance the ergodicity of the system when the stable noise indices in all directions fall within[1,2).
基金Supported in part by 985 Project,973 Project(Grant No.2011CB808000)National Natural Science Foundation of China(Grant No.11131003)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20100003110005)the Fundamental Research Funds for the Central Universities
文摘Abstract Let P be a transition matrix which is symmetric with respect to a measure π. The spectral gap of P in L2(π)-space, denoted by gap(P), is defined as the distance between 1 and the rest of the spectrum of P. In this paper, we study the relationship between gap(P) and the convergence rate of P^n. When P is transient, the convergence rate of pn is equal to 1 - gap(P). When P is ergodic, we give the explicit upper and lower bounds for the convergence rate of pn in terms of gap(P). These results are extended to L^∞ (π)-space.
基金Supported by NSFC(Grant Nos.1131003,11626245 and 11571043)
文摘The nonlinear branching process with immigration is constructed as the pathwise unique solution of a stochastic integral equation driven by Poisson random measures. Some criteria for the regularity, recurrence, ergodicity and strong ergodicity of the process are then established.
基金Xiangtan University New Staff Research Start-up Grant (Grant No. 08QDZ27)
文摘In this paper, we consider Markov branching processes with killing and resurrection. We first show that the Markov branching process with killing and stable resurrection is just the Feller minimum process which is honest and thus unique. We then further show that this honest Feller minimum process is not only positive recurrent but also strongly ergodic. The generating function of the important stationary distribution is explicitly expressed. For the interest of comparison and completeness, the results of the Markov branching processes with killing and instantaneous resurrection are also briefly stated. A new result regarding strong ergodicity of this difficult case is presented. The birth and death process with killing and resurrection together with another example is also analyzed.