The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V...I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V is periodic in x1 with the period T>0, (V. 3) V→O, Vx→O as |x2|→∞, uniformly in (t, x1).展开更多
The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated. First, the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered...The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated. First, the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered in the airfoil motion equations, and the fourth-order Runge-Kutta simulation method is used to obtain the numerical solutions to the equations. Then, a post-processing program is developed to calculate the physical parameters such as the amplitude and the frequency based on the discrete numerical solutions. With these parameters, the transition of the airfoil motion from balance, period, and period-doubling bifurcations to chaos is emphatically analyzed. Finally, the critical points of the period-doubling bifurcations and chaos are predicted using the Feigenbaum constant and the first two bifurcation critical values. It is shown that the numerical simulation method with post-processing and the prediction procedure are capable of simulating and predicting the bifurcation and chaos of airfoils with multiple strong nonlinearities.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has ...Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has high accuracy are obtained. The method of this paper is different from the known L-P methods.展开更多
In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to ana...In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to analyze the forced vibration of a strong nonlinear system.展开更多
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the solito...A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.展开更多
Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Ou...Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.展开更多
The static bifurcation of the parametrically excited strongly nonlinear oscillator is studied. We consider the averaged equations of a system subject to Duffing-van der Pol and quintic strong nonlinearity by introduci...The static bifurcation of the parametrically excited strongly nonlinear oscillator is studied. We consider the averaged equations of a system subject to Duffing-van der Pol and quintic strong nonlinearity by introducing the undetermined fundamental frequency into the computation in the complex normal form. To discuss the static bifurcation, the bifurcation problem is described as a 3-codimensional unfolding with Z2 symmetry on the basis of singularity theory. The transition set and bifurcation diagrams for the singularity are presented, while the stability of the zero solution is studied by using the eigenvalues in various parameter regions.展开更多
In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the ...In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.展开更多
The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered...The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered in the flutter equations of two-dimensional airfoil. First, the equations were transferred into matrix form, then the vibration process was divided into the persistent incremental processes of vibration moments. And the expression of their solutions could be obtained by using a certain amplitude as control parameter in the harmonic balance process, and then the bifurcation, limit cycle flutter phenomena and the number of harmonic terms were analyzed. Finally, numerical results calculated by the Runge-Kutta method were given to verify the results obtained by the proposed procedure. It has been shown that the incremental harmonic method is effective and precise in the analysis of strongly nonlinear flutter with multiple structural nonlinearities.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude o...We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast.Meanwhile,we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam.Furthermore,we can control the peak intensity contrast through choosing properly the truncation factor.As for the radiation force,we study the gradient and the scattering forces of CAi GV beams on Rayleigh dielectric sphere.Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAi GV beams.展开更多
A new method for the periodic solution of strongly nonlinear system is given. By using this method, the existance and stability of the periodic solution can be decided, and the approximate expression of the periodic s...A new method for the periodic solution of strongly nonlinear system is given. By using this method, the existance and stability of the periodic solution can be decided, and the approximate expression of the periodic solution can also be found.展开更多
In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an exis...In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the v...In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.展开更多
A new parameter transformation alpha = alpha (epsilon, n omega (0)/m, omega (l)) was defir2ed for extending the applicable range of the modified Lindstedt-Poincare method. It is suitable for determining subharmonic an...A new parameter transformation alpha = alpha (epsilon, n omega (0)/m, omega (l)) was defir2ed for extending the applicable range of the modified Lindstedt-Poincare method. It is suitable for determining subharmonic and ultraharmonic resonance solutions of strongly nonlinear systems. The 1/3 subharmonic and 3 ultraharmonic resonance solutions of the Duffing equation and the 1/2 subharmonic resonance solution of the Van der Pol-Mathieu equation were studied. These examples show approximate solutions are in good agreement with numerical solutions.展开更多
In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
In this paper, we present a study on the propagation of the symmetrical optical vortices formed by two collinear Laguerre-Gauss solitons in strongly nonlocal nonlinear media. The optical vortices, which move along the...In this paper, we present a study on the propagation of the symmetrical optical vortices formed by two collinear Laguerre-Gauss solitons in strongly nonlocal nonlinear media. The optical vortices, which move along the beam axis as the light propagates, result in a rotation of the beam's transverse profile. This physical reason of the rotation is the Gouy phase acquired by the component beams.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
文摘I. Introduction In this paper we are looking for solutions of the following Hamiltonian system of second order: where x= (x1, x2) and V satisfies (V. 1) V: R×R2→R is a C1-function, 1-periodic In t, (V.2) V is periodic in x1 with the period T>0, (V. 3) V→O, Vx→O as |x2|→∞, uniformly in (t, x1).
基金supported by the National Natural Science Foundation of China(Nos.51178476 and 10972241)
文摘The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated. First, the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered in the airfoil motion equations, and the fourth-order Runge-Kutta simulation method is used to obtain the numerical solutions to the equations. Then, a post-processing program is developed to calculate the physical parameters such as the amplitude and the frequency based on the discrete numerical solutions. With these parameters, the transition of the airfoil motion from balance, period, and period-doubling bifurcations to chaos is emphatically analyzed. Finally, the critical points of the period-doubling bifurcations and chaos are predicted using the Feigenbaum constant and the first two bifurcation critical values. It is shown that the numerical simulation method with post-processing and the prediction procedure are capable of simulating and predicting the bifurcation and chaos of airfoils with multiple strong nonlinearities.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
文摘Using the improved L-P method, the authors seek to salve a class of problems of square strongly nonlinear free oscillations and of strongly nonlinear nonoscillations. Their first-order approximate solutions which has high accuracy are obtained. The method of this paper is different from the known L-P methods.
基金The project partly supported by the Foundation of Zhongshan University Advanced Research Center
文摘In this paper,a nonlinear time transformation method is presented for the analysis of strong nonlinear oscillation systems.This method can be used to study the limit cycle behavior of the autonomous systems and to analyze the forced vibration of a strong nonlinear system.
基金Project supported by the National Natural Science Foundation of China(Grant No.11161017)the National Science Foundation of Hainan Province,China(Grant No.113001)
文摘A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.
文摘Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.
基金Project supported by the National Natural Science Foundation of China (Grant No 10872141)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060056005)
文摘The static bifurcation of the parametrically excited strongly nonlinear oscillator is studied. We consider the averaged equations of a system subject to Duffing-van der Pol and quintic strong nonlinearity by introducing the undetermined fundamental frequency into the computation in the complex normal form. To discuss the static bifurcation, the bifurcation problem is described as a 3-codimensional unfolding with Z2 symmetry on the basis of singularity theory. The transition set and bifurcation diagrams for the singularity are presented, while the stability of the zero solution is studied by using the eigenvalues in various parameter regions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072168 and 10872141)
文摘In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.
基金Project supported by the Ph. D. Programs Foundation of Ministry of Education of China (No.20050558032) the Natural Science Foundation of Guangdong Province of China (No.05003295) the Foundation of Sun Yat-sen University Advanced Research Center (No.06M8) the Young Teacher Scientific Research Foundation of Sun Sat-sen University (No.1131011)
文摘The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered in the flutter equations of two-dimensional airfoil. First, the equations were transferred into matrix form, then the vibration process was divided into the persistent incremental processes of vibration moments. And the expression of their solutions could be obtained by using a certain amplitude as control parameter in the harmonic balance process, and then the bifurcation, limit cycle flutter phenomena and the number of harmonic terms were analyzed. Finally, numerical results calculated by the Runge-Kutta method were given to verify the results obtained by the proposed procedure. It has been shown that the incremental harmonic method is effective and precise in the analysis of strongly nonlinear flutter with multiple structural nonlinearities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 11775083)。
文摘We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex(CAi GV)beams in strongly nonlocal nonlinear medium for the first time through numerical simulations.The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast.Meanwhile,we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam.Furthermore,we can control the peak intensity contrast through choosing properly the truncation factor.As for the radiation force,we study the gradient and the scattering forces of CAi GV beams on Rayleigh dielectric sphere.Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAi GV beams.
基金The project supported by the National Natural Science Foundation of China
文摘A new method for the periodic solution of strongly nonlinear system is given. By using this method, the existance and stability of the periodic solution can be decided, and the approximate expression of the periodic solution can also be found.
文摘In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
基金Supported by the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos. KZCX2-YW-201 and KZCX1-YW-12)Natural Science Fund of the Educational Department, Inner Mongolia (No.NJzy08005)the Science Fund for Young Scholars of Inner Mongolia University (No. ND0801)
文摘In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.
文摘A new parameter transformation alpha = alpha (epsilon, n omega (0)/m, omega (l)) was defir2ed for extending the applicable range of the modified Lindstedt-Poincare method. It is suitable for determining subharmonic and ultraharmonic resonance solutions of strongly nonlinear systems. The 1/3 subharmonic and 3 ultraharmonic resonance solutions of the Duffing equation and the 1/2 subharmonic resonance solution of the Van der Pol-Mathieu equation were studied. These examples show approximate solutions are in good agreement with numerical solutions.
文摘In this paper we study existence of solutions of a class of Cauchy problems for porous medium equations with strongly nonlinear sources or absorptions and convections when the initial trace is a Radon measure μ on RN.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904041 and 10674050)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094407110008)the Specialized Research Fund for Growing Seedlings of the Higher Education of Guangdong Province,China (Grant No. C10087)
文摘In this paper, we present a study on the propagation of the symmetrical optical vortices formed by two collinear Laguerre-Gauss solitons in strongly nonlocal nonlinear media. The optical vortices, which move along the beam axis as the light propagates, result in a rotation of the beam's transverse profile. This physical reason of the rotation is the Gouy phase acquired by the component beams.