Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical la...We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.展开更多
Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correc...In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.展开更多
In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the g...In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.展开更多
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms...We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. La...In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.展开更多
In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,trunca...In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.展开更多
The proposal is “mass increases due to strong and gravitational potentials, while it decreases due to Electromagnetic potential”. This proposal explains the big difference in mass between hadrons (protons, neutrons,...The proposal is “mass increases due to strong and gravitational potentials, while it decreases due to Electromagnetic potential”. This proposal explains the big difference in mass between hadrons (protons, neutrons, & mesons) and their components (quarks), mass difference between nucleus and its individual components (protons and neutrons), massless of gamma photons, abnormal masses of mesons and bosons, and the excess in galaxy masses (dark matter). Also, this proposal shows the exact relation between mass and energy: Strong Potential=−3.04mc2| Electric Potential |=−5.57×10−3mc2Gravitational Potential=−1.22×10−7mc2where m represents the excess in mass due to strong potential, or gravitational potential and represents the decrease in mass due to electromagnetic potential. Released energy here equals potential energy and doesn’t equal decrease in mass using the formula E = mc2. Released energy is transferred to heat, photons, kinetic energy… Finally, proposal will try to describe the relation between photon energy and mass of its components using the general equation of kinetic energy: Photon Energy=1/2mc2m is the sum of the individual masses of its components, while the total mass of photon is zero.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S...Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.展开更多
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.12065014,12047501,12247101,and 12335001)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA266)+5 种基金the West Light Foundation of Chinese Academy of Sciences(Grant No.21JR7RA201)supported by the China National Funds for Distinguished Young Scientists(Grant No.11825503)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the 111 Project(Grant No.B20063)the fundamental Research Funds for the Central Universitiesthe Project for Top-Notch Innovative Talents of Gansu province。
文摘We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.
文摘Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
文摘In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.
基金the National Natural Science Foun-dation of China(Grant No.71961003).
文摘In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
文摘In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.
基金Supported by the National Natural Science Foundation of China(11926322)the Fundamental Research Funds for the Central Universities of South-Central MinZu University(CZY22013,3212023sycxjj001)。
文摘In this paper,we investigate the strong Feller property of stochastic differential equations(SDEs)with super-linear drift and Hölder diffusion coefficients.By utilizing the Girsanov theorem,coupling method,truncation method and the Yamada-Watanabe approximation technique,we derived the strong Feller property of the solution.
文摘The proposal is “mass increases due to strong and gravitational potentials, while it decreases due to Electromagnetic potential”. This proposal explains the big difference in mass between hadrons (protons, neutrons, & mesons) and their components (quarks), mass difference between nucleus and its individual components (protons and neutrons), massless of gamma photons, abnormal masses of mesons and bosons, and the excess in galaxy masses (dark matter). Also, this proposal shows the exact relation between mass and energy: Strong Potential=−3.04mc2| Electric Potential |=−5.57×10−3mc2Gravitational Potential=−1.22×10−7mc2where m represents the excess in mass due to strong potential, or gravitational potential and represents the decrease in mass due to electromagnetic potential. Released energy here equals potential energy and doesn’t equal decrease in mass using the formula E = mc2. Released energy is transferred to heat, photons, kinetic energy… Finally, proposal will try to describe the relation between photon energy and mass of its components using the general equation of kinetic energy: Photon Energy=1/2mc2m is the sum of the individual masses of its components, while the total mass of photon is zero.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
基金financially supported by the National Natural Science Foundation of China (No.52106259)the Fundamental Research Funds for the Central Universities (2024MS013)Key Research and Development Program of Shaanxi (Program No.2022LL-JB-08)。
文摘Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.