Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correc...In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. La...In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.展开更多
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product v...Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product via laccase/caffeic acid(Lac/CA)-catalyzed crosslinking in conjunction with galactomannan(Man).The formation of high molecular weight crosslinked polymers and the Ig G-binding were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)and Western blotting.The study indicated that Lac/CA-catalyzed crosslinking plus Man conjugation substantially altered secondary and tertiary structures of OVA along with the variation in surface hydrophobicity.Gastrointestinal digestion stability assay indicated that crosslinked OVA exhibited less resistance in simulated gastric fluid(SGF)and simulated intestinal fluid(SIF).Mouse model study indicated that Lac-Man/OVA ameliorated eosinophilic airway inflammatory response and efficiently downregulated the expression of Th2-related cytokines(interleukin(IL)-4,IL-5,and IL-13),and upregulated IFN-γand IL-10 expression.Stimulation of bone marrow-derived dendritic cells with Lac-Man/OVA suppressed the expression of phenotypic maturation markers(CD80 and CD86)and MHC class II molecules,and suppressed the expression levels of proinflammatory cytokines.The knowledge obtained in the present study offers an effective way to acquire a hypoallergenic OVA product that can have a therapeutic effect in alleviating OVA-induced allergic asthma.展开更多
Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Mot...Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,...Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.展开更多
On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f...On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.展开更多
As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their...As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their spatiotemporal variations,is still limited.In the present study,variations in the social structure of an endangered Indo-Pacific humpback dolphin population in Xiamen Bay,China,were monitored over two distinct periods(2007–2010 and 2017–2019)to analyze the effects of habitat utilization and the composition of individuals within the population.In both periods,the population demonstrated a strikingly similar pattern of social differentiation,characterized by the division of individuals into two main clusters and one small cluster.Spatially,the two primary clusters occupied the eastern and western waters,respectively,although the core distribution area of the eastern cluster shifted further eastward between the two periods.Despite this distribution shift,the temporal stability of the social structure and inter-associations within the eastern cluster remained unaffected.A subset of 16individuals observed in both periods,comprising 51.6%and 43.2%of the population in each respective period,emerged as a foundational element of the social structure and may be responsible for sustaining social structure stability,especially during the 2007–2010 period.These observations suggest that the composition of dominant individuals,an internal factor,had a more substantial influence on the formation of the social network than changes in habitat use,an external factor.Consequently,the study proposes distinct conservation measures tailored to each of the two main clusters.展开更多
Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatori...Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.展开更多
The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation o...The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale.展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic...The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
Coastal ecosystems are an important region for biogeochemical cycling,are a hotspot of anthropogenic disturbance and play a crucial role in global carbon cycling through the metabolic activities of bacterioplankton.Ba...Coastal ecosystems are an important region for biogeochemical cycling,are a hotspot of anthropogenic disturbance and play a crucial role in global carbon cycling through the metabolic activities of bacterioplankton.Bacterioplankton can be broadly classified into two lifestyles:free-living(FL)and particle-attached(PA).However,how coastal bacterioplankton the community structure,co-occurrence networks and carbon metabolic functions with different lifestyles are differentiated is still largely unknown.Understanding these processes is necessary to better determine the contributions of coastal bacterioplankton to carbon cycling.Here,the characteristics of community structure and carbon metabolism function of bacterioplankton with two lifestyles in the coastal areas of Guangdong Province were investigated using amplicon sequencing,metagenomic,and metatranscriptomic techniques.The results show that the main bacterioplankton responsible for carbon metabolism were the Pseudomonadota,Bacteroidota,and Actinomycetota.The microbial community structure,carbon metabolic function,and environmental preferences differ between different lifestyles.FL and PA bacteria exhibited higher carbon fixation and degradation potentials,respectively.A range of environmental factors,such as dissolved oxygen,pH,and temperature,were associated with the community structure and carbon metabolic functions of the bacterioplankton.Human activities,such as nutrient discharge,may affect the distribution of functional genes and enhance the carbon degradation functions of bacterioplankton.In conclusion,this study increased the understanding of the role of microorganisms in regulating carbon export in coastal ecosystems with intense human activity.展开更多
Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in ...Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.展开更多
文摘Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
文摘In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B15151300042021B1515140021)+2 种基金the Scientific Research Start-up Funding of Guangdong Medical University(1026/4SG21229G)China Postdoctoral Science Foundation(2021M702781)Guangdong Medical University Post-doctoral Research Funding(2BH19006P)。
文摘Ovalbumin(OVA)is the major allergenic protein that can induce T helper 2(Th2)-allergic reactions,for which current treatment options are inadequate.In this study,we developed a polymerized hypoallergenic OVA product via laccase/caffeic acid(Lac/CA)-catalyzed crosslinking in conjunction with galactomannan(Man).The formation of high molecular weight crosslinked polymers and the Ig G-binding were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)and Western blotting.The study indicated that Lac/CA-catalyzed crosslinking plus Man conjugation substantially altered secondary and tertiary structures of OVA along with the variation in surface hydrophobicity.Gastrointestinal digestion stability assay indicated that crosslinked OVA exhibited less resistance in simulated gastric fluid(SGF)and simulated intestinal fluid(SIF).Mouse model study indicated that Lac-Man/OVA ameliorated eosinophilic airway inflammatory response and efficiently downregulated the expression of Th2-related cytokines(interleukin(IL)-4,IL-5,and IL-13),and upregulated IFN-γand IL-10 expression.Stimulation of bone marrow-derived dendritic cells with Lac-Man/OVA suppressed the expression of phenotypic maturation markers(CD80 and CD86)and MHC class II molecules,and suppressed the expression levels of proinflammatory cytokines.The knowledge obtained in the present study offers an effective way to acquire a hypoallergenic OVA product that can have a therapeutic effect in alleviating OVA-induced allergic asthma.
基金the Young Talent Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.Q20234301)the Guiding Project of the Scientific Research Plan by the Hubei Provincial Department of Education(Grant No.B2023222)+2 种基金the Natural Science Foundation of Hubei Province(Grant No.2022CFB527)the Scientific Research Project of Jingchu University of Technology(Grant Nos.YY202401,096201-5 Chin.Phys.B 33,096201(2024)YY202409,YY202207,and YB202212)the Open Research Projects of Jingchu University of Technology(Grant No.HX20240009).
文摘Recent experimental advancements reported a chemical reaction between antimony and nitrogen under high temperature and high pressure,yielding crystalline antimony nitride(Sb_(3)N_(5))with an orthorhombic structure.Motivated by this statement,we calculate the stability,elastic properties,electronic properties and energy density of the Cmc2_(1) structure for pnictogen nitrides X_(3)N_(5)(X=P,As,Sb,and Bi)using first-principles calculations combined with particle swarm optimization algorithms.Calculations of formation enthalpies,elastic constants and phonon spectra show that P_(3)N_(5),As_(3)N_(5) and Sb_(3)N_(5) are thermodynamically,mechanically and kinetically stable at 35 GPa,whereas Bi_(3)N_(5) is mechanically and kinetically stable but thermodynamically unstable.The computed electronic density of states shows strong covalent bonding between the N atoms and the phosphorus group atoms in the four compounds,confirmed by the calculated electronic localization function.We also calculate the energy densities for Sb_(3)N_(5) and find it to be a potentially high-energy-density material.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金funding from the Natural Science Foundation of China(22278150,22075086,22138005,and 22141001)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010980,2023A1515010046)the Fundamental Research Funds for the Central Universities(2022ZYGXZR101).
文摘Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.
基金This research is related to the project GO NEWTON“Agroforestry Network in Tuscany”,financed by the Tuscany Region through the Measure 16.2 of Rural Development Plan 2014-2020 to promote agroforestry systems by spreading knowledge to farmers and promoting innovation in the Tuscan territory.
文摘On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.
基金supported by the National Natural Science Foundation of China (32030011,31630071)National Key Research and Development Program of China (2022YFF1301600)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their spatiotemporal variations,is still limited.In the present study,variations in the social structure of an endangered Indo-Pacific humpback dolphin population in Xiamen Bay,China,were monitored over two distinct periods(2007–2010 and 2017–2019)to analyze the effects of habitat utilization and the composition of individuals within the population.In both periods,the population demonstrated a strikingly similar pattern of social differentiation,characterized by the division of individuals into two main clusters and one small cluster.Spatially,the two primary clusters occupied the eastern and western waters,respectively,although the core distribution area of the eastern cluster shifted further eastward between the two periods.Despite this distribution shift,the temporal stability of the social structure and inter-associations within the eastern cluster remained unaffected.A subset of 16individuals observed in both periods,comprising 51.6%and 43.2%of the population in each respective period,emerged as a foundational element of the social structure and may be responsible for sustaining social structure stability,especially during the 2007–2010 period.These observations suggest that the composition of dominant individuals,an internal factor,had a more substantial influence on the formation of the social network than changes in habitat use,an external factor.Consequently,the study proposes distinct conservation measures tailored to each of the two main clusters.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.41975009,42230610,41840650 and U2242208)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Wang Binbin,2022069).
文摘Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.
基金Financial support from the National Natural Science Foundation of China(22208329,22178378,22127812,21908116 and U19B2005)Jiangxi Provincial Natural Science Foundation of China(20232BAB213044)。
文摘The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale.
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
基金supported by the National Natural Science Foundation of China(22374119,21902128)the China Postdoctoral Science Foundation(2021M692620)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-01)the Key Project of Natural Science Fund of Shaanxi Province(2023-JC-ZD-06)。
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金supported by the National Nat-ural Science Foundation of China(No.32200090)the Key-Area Research and Development Program of Guangdong Province(No.2022B0202110001)+2 种基金Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515012270,2022A1515010756)the Science and Technology Program by Department of Natural Resources of Guangdong Province(GDNRC[2023]41)Key Research Pro-gram Project of Guangzhou Science and Technology Bureau(No.2024B03J1276).
文摘Coastal ecosystems are an important region for biogeochemical cycling,are a hotspot of anthropogenic disturbance and play a crucial role in global carbon cycling through the metabolic activities of bacterioplankton.Bacterioplankton can be broadly classified into two lifestyles:free-living(FL)and particle-attached(PA).However,how coastal bacterioplankton the community structure,co-occurrence networks and carbon metabolic functions with different lifestyles are differentiated is still largely unknown.Understanding these processes is necessary to better determine the contributions of coastal bacterioplankton to carbon cycling.Here,the characteristics of community structure and carbon metabolism function of bacterioplankton with two lifestyles in the coastal areas of Guangdong Province were investigated using amplicon sequencing,metagenomic,and metatranscriptomic techniques.The results show that the main bacterioplankton responsible for carbon metabolism were the Pseudomonadota,Bacteroidota,and Actinomycetota.The microbial community structure,carbon metabolic function,and environmental preferences differ between different lifestyles.FL and PA bacteria exhibited higher carbon fixation and degradation potentials,respectively.A range of environmental factors,such as dissolved oxygen,pH,and temperature,were associated with the community structure and carbon metabolic functions of the bacterioplankton.Human activities,such as nutrient discharge,may affect the distribution of functional genes and enhance the carbon degradation functions of bacterioplankton.In conclusion,this study increased the understanding of the role of microorganisms in regulating carbon export in coastal ecosystems with intense human activity.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027 and LZ23C200001).
文摘Studies showed that complexation of polyphenols with milk allergens reduced their immunogenic potential.However,the relationship between structures of polyphenols and their hypoallergenic effects on milk allergens in association with physiological and conformational changes of the complexes remain unclear.In this study,polyphenols from eight botanical sources were extracted to prepare non-covalent complexes withβ-lactoglobulin(β-LG),a major allergen in milk.The dominant phenolic compounds bound toβ-LG with a diminished allergenicity were identified to investigate their respective role on the structural and allergenic properties ofβ-LG.Extracts from Vaccinium fruits and black soybeans were found to have great inhibitory effects on the IgE-and IgG-binding abilities ofβ-LG.Among the fourteen structure-related phenolic compounds,flavonoids and tannins with larger MWs and multi-hydroxyl substituents,notably rutin,EGCG,and ellagitannins were more potent to elicit changes on the conformational structures ofβ-LG to decrease the allergenicity of complexedβ-LG.Correlation analysis further demonstrated that a destabilized secondary structure and protein depolymerization caused by polyphenol-binding were closely related to the allergenicity property of formed complexes.This study provides insights into the understanding of structure-allergenicity relationship ofβ-LG-polyphenol interactions and would benefit the development of polyphenol-fortified matrices with hypoallergenic potential.