We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combinati...The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.展开更多
The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron an...The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron and longitudinal-optical phonon contributions in GaAs/Al0.3 Ga0.7 AS parabolic quantum well structures are obtained as functions of the well width. It is shown that the binding energies of the bound polaron are obviously reduced by the electron-phonon interaction and the phonon contribution is observable and cannot be neglected.展开更多
The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the fram...The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the dielectric continuum approximation. The electron-phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numerical results reveal that there exist three branches of eigenfrequencies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.展开更多
With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation en...With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory(QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay(amplify) with raising temperature in the regime of lower(higher)temperature. They are decreasing functions of Coulomb impurity potential strength.展开更多
Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constan...Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constant α . Numerical and analytical results showed that the energy shift was more sensitive to α than to the Coulomb binding parameter ( β ) and increased with the decrease of effective quantum well width l Z . It was interesting that due to the electronic confinement in the quasi 2D (quantum well) structures, the lower bound of the strong coupling regime was shifted to smaller values of α . Comparison of the polaron in the quantum well with that in the quantum wire or dot showed that the polaronic effect strengthened with decrease of the confinement dimension.展开更多
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
文摘The properties of a bound polaron in a parabolic quantum dot with weak electron-LO-phonon coupling under a Coulomb field are studied. The ground state energy of the bound polaron is derived by using a linear combination operator and the perturbation method. The influence of the interaction between phonons with different wave vectors in the recoil process on the ground state energy of the bound polaron is discussed. Numerical calculations are performed,and the results show that the ground state energy increases significantly as the effective confinement length of the quantum dot decreases,considering of the interaction between phonons. When l0〉1.0, the influence of the interaction between phonons on the ground state energy cannot be ignored.
文摘The binding energy of a bound polaron in a finite parabolic quantum well is studied theoretically by a fractional- dimensional variational method. The numerical results for the binding energies of the bound polaron and longitudinal-optical phonon contributions in GaAs/Al0.3 Ga0.7 AS parabolic quantum well structures are obtained as functions of the well width. It is shown that the binding energies of the bound polaron are obviously reduced by the electron-phonon interaction and the phonon contribution is observable and cannot be neglected.
基金supported by Universities Program of Inner Mongol of China(Grant No NJZZ07008)the Natural Science Foundation of Inner Mongol of China(Grant No 200607010105)
文摘The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the dielectric continuum approximation. The electron-phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numerical results reveal that there exist three branches of eigenfrequencies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.
基金Project supported by the National Natural Science Foundation of China(Grant No.11464033)
文摘With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory(QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay(amplify) with raising temperature in the regime of lower(higher)temperature. They are decreasing functions of Coulomb impurity potential strength.
文摘Feynman variational path integral theory was used to obtain the ground state energy of a polaron in a quantum well in the presence of a Coulomb potential for arbitrary values of the electron phonon coupling constant α . Numerical and analytical results showed that the energy shift was more sensitive to α than to the Coulomb binding parameter ( β ) and increased with the decrease of effective quantum well width l Z . It was interesting that due to the electronic confinement in the quasi 2D (quantum well) structures, the lower bound of the strong coupling regime was shifted to smaller values of α . Comparison of the polaron in the quantum well with that in the quantum wire or dot showed that the polaronic effect strengthened with decrease of the confinement dimension.