In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operato...In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).展开更多
Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n b...Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.展开更多
Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process...Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.展开更多
基金NNSF of China(19801023)Teachiug and Research A ward Fund for Outstanding Young Teachers in Higher Edncation Institutions of MOE.Chinal.
文摘In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).
文摘Let E be an arbitrary real Banach space and K be a nonempty closed convex subsets of E. Let T:K→K be a uniformly continuous _hemicontractive operator with bounded range and a n,b n,c n,a ′ n,b ′ n,c ′ n be sequences in [0,1] satisfying:ⅰ) a n+b n+c n=a ′ n+b ′ n+c ′ n=1. n≥0; ⅱ) lim b n= lim b ′ n= lim c ′ n= 0; ⅲ)∑∞n=0b n=∞; ⅳ) c n=o(b n). For any given x 0,u 0,v 0∈K, define the Ishikawa type iterative sequence x n as follows: x n+1 =a nx n+b nTy n+c nu n, y n=a ′ nx n+b ′ nTx n+c ′ nv n (n≥0), where u n and v n are bounded sequences in K. Then x n converges strongly to the unique fixed point of T. Related result deals with the convergence of Ishikawa type iterative sequence to the solution of _strongly accretive operator equations.
文摘Suppose that X is a real Banach space, H: X→X is a Lipschitz operator, T: X→X is a uniformly continuous operator with bounded range, and H+T is strongly accretive. Then the Ishikawa iteration process converges strongly to the unique solution of the equation Hx+Tx=f . This conclusion extends the corresponding results in recent papers.