In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial ...In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial differential Equation (PDE) into ordinary differential Equation (ODE) systems by using the invariant subspace method. Secondly, combining with the dynamical system method, we use the invariant subspaces which have been obtained to construct the exact solutions of the equation. In the end, the figures of the exact solutions are given.展开更多
针对强信号背景下弱信号波达方向(direction of arriaval,DOA)估计问题,提出了一种基于噪声子空间扩展的弱信号DOA估计算法。该算法提出并使用了噪声子空间扩充的思想,其先将强信号导向矢量所在空间纳入噪声子空间进而构造出扩展噪声子...针对强信号背景下弱信号波达方向(direction of arriaval,DOA)估计问题,提出了一种基于噪声子空间扩展的弱信号DOA估计算法。该算法提出并使用了噪声子空间扩充的思想,其先将强信号导向矢量所在空间纳入噪声子空间进而构造出扩展噪声子空间,再在该扩展噪声子空间基础上利用常规多信号分类(multiple signalclassification,MUSIC)算法得到弱信号的DOA估计。通过噪声子空间的扩充有效地抑制了强信号谱峰,算法无需已知强信号方向及导向矢量,运算量与常规MUSIC相当。理论分析表明该算法对弱信号DOA估计性能不劣于对应的强信号阻塞类算法,仿真实验证实了其有效性和可行性。展开更多
在空间弱信号DOA正确估计问题的研究中,针对强弱信号并存时弱信号波达方向(direction of arrival,DOA)难以准确估计的问题,提出了一种强信号背景下弱信号DOA估计新方法,首先估计阵列接收数据协方差矩阵,利用协方差矩阵特征值梯度变化不...在空间弱信号DOA正确估计问题的研究中,针对强弱信号并存时弱信号波达方向(direction of arrival,DOA)难以准确估计的问题,提出了一种强信号背景下弱信号DOA估计新方法,首先估计阵列接收数据协方差矩阵,利用协方差矩阵特征值梯度变化不同的特点估计出强信号子空间;然后将强信号的子空间正交化后并入噪声子空间,形成扩展子空间;同时构建新的导向矢量,利用常规多信号分类(multiple signalclassification,MUSIC)算法得到弱信号的DOA估计。算法无需已知强信号个数及DOA,通过扩展噪声子空间抑制强信号谱峰,具有更高的强弱信号分辨率。仿真结果验证了改进方法的可行性和有效性,可为正确估计弱信号DOA提供了依据。展开更多
文摘In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial differential Equation (PDE) into ordinary differential Equation (ODE) systems by using the invariant subspace method. Secondly, combining with the dynamical system method, we use the invariant subspaces which have been obtained to construct the exact solutions of the equation. In the end, the figures of the exact solutions are given.
文摘针对强信号背景下弱信号波达方向(direction of arriaval,DOA)估计问题,提出了一种基于噪声子空间扩展的弱信号DOA估计算法。该算法提出并使用了噪声子空间扩充的思想,其先将强信号导向矢量所在空间纳入噪声子空间进而构造出扩展噪声子空间,再在该扩展噪声子空间基础上利用常规多信号分类(multiple signalclassification,MUSIC)算法得到弱信号的DOA估计。通过噪声子空间的扩充有效地抑制了强信号谱峰,算法无需已知强信号方向及导向矢量,运算量与常规MUSIC相当。理论分析表明该算法对弱信号DOA估计性能不劣于对应的强信号阻塞类算法,仿真实验证实了其有效性和可行性。
文摘在空间弱信号DOA正确估计问题的研究中,针对强弱信号并存时弱信号波达方向(direction of arrival,DOA)难以准确估计的问题,提出了一种强信号背景下弱信号DOA估计新方法,首先估计阵列接收数据协方差矩阵,利用协方差矩阵特征值梯度变化不同的特点估计出强信号子空间;然后将强信号的子空间正交化后并入噪声子空间,形成扩展子空间;同时构建新的导向矢量,利用常规多信号分类(multiple signalclassification,MUSIC)算法得到弱信号的DOA估计。算法无需已知强信号个数及DOA,通过扩展噪声子空间抑制强信号谱峰,具有更高的强弱信号分辨率。仿真结果验证了改进方法的可行性和有效性,可为正确估计弱信号DOA提供了依据。