强干扰的环境下,基于传感器阵列的波达方向(Direction of arrival,DOA)估计是阵列信号处理中的重要问题。虽然对于网格点目标现有方法的DOA估计精度较高,但对于离格点目标现有方法的DOA估计性能会严重下降。本文提出一种离格情况下的DO...强干扰的环境下,基于传感器阵列的波达方向(Direction of arrival,DOA)估计是阵列信号处理中的重要问题。虽然对于网格点目标现有方法的DOA估计精度较高,但对于离格点目标现有方法的DOA估计性能会严重下降。本文提出一种离格情况下的DOA估计方法,首先设计一种鲁棒的正交零陷矩阵滤波法(Robust orthogonal matrix filter with nulling,ROMFN),它结合了正交零陷滤波法(Orthogonal matrix filter with nulling,OMFN)和最差性能下的鲁棒自适应波束形成,在对离格点目标达到滤波效果的同时只需设计较少的网格点。此外,新的矩阵滤波法保留了高斯白噪声的特性,避免了噪声白化的预处理过程。其次基于离格点稀疏贝叶斯推断(Off?grid sparse Bayesian inference,OGSBI)和ROMFN,形成一种强干扰下DOA估计的新方法。与现有方法相比,仿真结果表明该方法可以在不同的网格间距、不同的信噪比和干噪比下获得更高的估计精度。展开更多
文摘强干扰的环境下,基于传感器阵列的波达方向(Direction of arrival,DOA)估计是阵列信号处理中的重要问题。虽然对于网格点目标现有方法的DOA估计精度较高,但对于离格点目标现有方法的DOA估计性能会严重下降。本文提出一种离格情况下的DOA估计方法,首先设计一种鲁棒的正交零陷矩阵滤波法(Robust orthogonal matrix filter with nulling,ROMFN),它结合了正交零陷滤波法(Orthogonal matrix filter with nulling,OMFN)和最差性能下的鲁棒自适应波束形成,在对离格点目标达到滤波效果的同时只需设计较少的网格点。此外,新的矩阵滤波法保留了高斯白噪声的特性,避免了噪声白化的预处理过程。其次基于离格点稀疏贝叶斯推断(Off?grid sparse Bayesian inference,OGSBI)和ROMFN,形成一种强干扰下DOA估计的新方法。与现有方法相比,仿真结果表明该方法可以在不同的网格间距、不同的信噪比和干噪比下获得更高的估计精度。