(Ba_(1-x)Sr_(x))(MnyTi1-y)O_(3)(BSMT)ceramics with x=35,40 mol%and y=0,0.1,0.2,0.3,0.4,0.5 mol%were prepared using a conventional solid-state reaction approach.The dielectric and ferroelectric properties were characte...(Ba_(1-x)Sr_(x))(MnyTi1-y)O_(3)(BSMT)ceramics with x=35,40 mol%and y=0,0.1,0.2,0.3,0.4,0.5 mol%were prepared using a conventional solid-state reaction approach.The dielectric and ferroelectric properties were characterized using impedance analysis and polarization-electric field(P-E)hysteresis loop measurements,respectively.The adiabatic temperature drop was directly measured using a thermocouple when the applied electric field was removed.The results indicate that high permittivity and low dielectric losses were obtained by doping 0.1-0.4 mol%of manganese ions in(BaSr)TiO_(3)(BST)specimens.A maximum electrocaloric effect(ECE)of 2.75 K in temperature change with electrocaloric strength of 0.55 K·(MV/m)^(-1)was directly obtained at~21℃and 50 kV/cm in Ba_(0.6)Sr_(0.4)Mn_(0.001)Ti_(0.999)O_(3) sample,offering a promising ECE material for practical refrigeration devices working at room temperature.展开更多
The electronic and crystal structural properties of Bi-doped Sr3Ti2O7 are studied using the first principles density functional theory(DFT)based on pseudopotentials basis and plane-wave method.Our results show that ...The electronic and crystal structural properties of Bi-doped Sr3Ti2O7 are studied using the first principles density functional theory(DFT)based on pseudopotentials basis and plane-wave method.Our results show that the formation energy of Bi doping in Site-1 and Site-2 of Sr3Ti2O7 increases with increasing doping concentration.And at the same doping concentration,the formation energy of Bi doping in Site-2 is lower than that in Site-1.The undoped Sr3Ti2O7is found to be an insulator and its Fermi level stays at the top of the valence band.While the Fermi level of the Bi-doped Sr3Ti2O7moves into the bottom of conduction band,the system undergoes an insulator-to-metal phase transition.Furthermore,our calculation results demonstrated that the Fermi level of the Bi-doped Sr3Ti2O7goes deeper into the bottom of conduction band with increasing doping concentration.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51372042 and 51872053)the Guangdong Provincial Natural Science Foundation(Grant No.2015A030308004)+2 种基金the NSFC–Guangdong Joint Fund(Grant No.U1501246)the Dongguan City Frontier Research Project(Grant No.2019622101006)the Advanced Energy Science and Technology Guangdong Provincial Laboratory Foshan Branch-Foshan Xianhu Laboratory Open Fund-Key Project(Grant No.XHT2020-011).
文摘(Ba_(1-x)Sr_(x))(MnyTi1-y)O_(3)(BSMT)ceramics with x=35,40 mol%and y=0,0.1,0.2,0.3,0.4,0.5 mol%were prepared using a conventional solid-state reaction approach.The dielectric and ferroelectric properties were characterized using impedance analysis and polarization-electric field(P-E)hysteresis loop measurements,respectively.The adiabatic temperature drop was directly measured using a thermocouple when the applied electric field was removed.The results indicate that high permittivity and low dielectric losses were obtained by doping 0.1-0.4 mol%of manganese ions in(BaSr)TiO_(3)(BST)specimens.A maximum electrocaloric effect(ECE)of 2.75 K in temperature change with electrocaloric strength of 0.55 K·(MV/m)^(-1)was directly obtained at~21℃and 50 kV/cm in Ba_(0.6)Sr_(0.4)Mn_(0.001)Ti_(0.999)O_(3) sample,offering a promising ECE material for practical refrigeration devices working at room temperature.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos.51575452,51475378 and 51474176)the Fundamental Research Funds for the Central Universities (No.3102015ZY025)+2 种基金the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnic University (Grant No.161-QP-2016)NSFC-Guangdong mutual funds (phase ii) supercomputing science and applied research under special fundingNational supercomputing center in Guangzhou
文摘The electronic and crystal structural properties of Bi-doped Sr3Ti2O7 are studied using the first principles density functional theory(DFT)based on pseudopotentials basis and plane-wave method.Our results show that the formation energy of Bi doping in Site-1 and Site-2 of Sr3Ti2O7 increases with increasing doping concentration.And at the same doping concentration,the formation energy of Bi doping in Site-2 is lower than that in Site-1.The undoped Sr3Ti2O7is found to be an insulator and its Fermi level stays at the top of the valence band.While the Fermi level of the Bi-doped Sr3Ti2O7moves into the bottom of conduction band,the system undergoes an insulator-to-metal phase transition.Furthermore,our calculation results demonstrated that the Fermi level of the Bi-doped Sr3Ti2O7goes deeper into the bottom of conduction band with increasing doping concentration.