Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stabi...Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs.展开更多
Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display...Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display that perovskite phase LSM submicro particles are evenly distributed in the porous YSZ matrix.Polarization curves and electrochemical impedance spectra are conducted for the RSOFC at 800 and 850C under both SOFC and SOEC modes.At 850℃,the single cell has the maximum power density of~726 mW/cm^(2)under SOFC mode,and electrolysis voltage of 1.35 V at 1 A/cm^(2)under SOEC mode.Fuel cell/water electrolysis cycle shows the cell has good performance stability during 6 cycles,which exhibits the LSM–YSZ oxygen electrode has high electrochemical performance and good stability.The results suggest that netw ork-like LSM–YSZ electrode made by infiltration process could be a promising oxygen electrode for high temperature RSOFCs.展开更多
A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striki...A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.展开更多
Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto con...Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.展开更多
利用溶胶凝胶-丝网印刷法在氧化铝基底上制备了La1-x Sr x MnO3(x=0.3、0.4和0.5)薄膜,研究了薄膜通电发热后的热辐射特性。不同掺锶量的薄膜发热温度在90℃~360℃范围内时,红外辐射波长主要集中在4000 nm^5000 nm,发热温度越高,最大辐...利用溶胶凝胶-丝网印刷法在氧化铝基底上制备了La1-x Sr x MnO3(x=0.3、0.4和0.5)薄膜,研究了薄膜通电发热后的热辐射特性。不同掺锶量的薄膜发热温度在90℃~360℃范围内时,红外辐射波长主要集中在4000 nm^5000 nm,发热温度越高,最大辐射波长越短,而掺锶量对红外辐射光谱影响较小;掺锶量x=0.4的薄膜可实现800℃以上的加热温度,控制电压使发热温度保持在500℃时,可实现长时间稳定加热。展开更多
In this paper, we reported the fuel cell performance with La0.8Sr0.2MnO3 (LSM)/Ce0.8Sm0.2O1.9 (SDC) composite cathode prepared from LSM powders of different particle sizes via the silk-printing technique. It was f...In this paper, we reported the fuel cell performance with La0.8Sr0.2MnO3 (LSM)/Ce0.8Sm0.2O1.9 (SDC) composite cathode prepared from LSM powders of different particle sizes via the silk-printing technique. It was found that the change in particle size ofLSM nanoparticle from 40 to 90 nm resulted in an increase in the maximum power density from 132 to 228 mW/cm2 at 650 ℃ with H2 as fuel and O2 as oxidant. And the polarization resistance of the electrode decreased from 2.547 to 1.034 Ω.cm2. Concerning the particle size of electrode materials, a higher activity was anticipated with smaller particles because a large number of TPB or electrode surface sites along with a higher porosity could be developed. However, this study showed that the electrode prepared with particles of larger diameter had fine and uniform microstructure resulting in higher power density and lower overpotential, where homogeneous distribution of particles and pores was beneficial for increasing the electrochemical active area and the electronic conductivity of the electrodes as well as the gas diffusion for the reactants.展开更多
基金supported by the National Key R&D Program of China(2021YFB4001401)the National Natural Science Foundation of China(51972298)。
文摘Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs.
基金This project was sponsored by financial supports from the Major State Basic Research Development Program of China(973 Program,No.2012CB215406).
文摘Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display that perovskite phase LSM submicro particles are evenly distributed in the porous YSZ matrix.Polarization curves and electrochemical impedance spectra are conducted for the RSOFC at 800 and 850C under both SOFC and SOEC modes.At 850℃,the single cell has the maximum power density of~726 mW/cm^(2)under SOFC mode,and electrolysis voltage of 1.35 V at 1 A/cm^(2)under SOEC mode.Fuel cell/water electrolysis cycle shows the cell has good performance stability during 6 cycles,which exhibits the LSM–YSZ oxygen electrode has high electrochemical performance and good stability.The results suggest that netw ork-like LSM–YSZ electrode made by infiltration process could be a promising oxygen electrode for high temperature RSOFCs.
基金supported by Shanghai Rising-Star Program (No. 11QH1401000)the National Natural Science Foundation of China (No. 50932003)+1 种基金the Key Project of Chinese Ministry of Education (No. 211055)Shanghai Research Special Fund for Outstanding Young Teachers (No. sdl10009)
文摘A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.
基金financial support from the National Key R&D Program of China (Grant 2017YFA0700102)the National Natural Science Foundation of China (Grants 21573222 and 91545202)+4 种基金Dalian National Laboratory for Clean Energy (DNL180404)Dalian Institute of Chemical Physics (Grant DICP DMTO201702)Dalian Outstanding Young Scientist Foundation (Grant 2017RJ03)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB17020200)the financial support from CAS Youth Innovation Promotion (Grant no. 2015145)
文摘Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode.
文摘利用溶胶凝胶-丝网印刷法在氧化铝基底上制备了La1-x Sr x MnO3(x=0.3、0.4和0.5)薄膜,研究了薄膜通电发热后的热辐射特性。不同掺锶量的薄膜发热温度在90℃~360℃范围内时,红外辐射波长主要集中在4000 nm^5000 nm,发热温度越高,最大辐射波长越短,而掺锶量对红外辐射光谱影响较小;掺锶量x=0.4的薄膜可实现800℃以上的加热温度,控制电压使发热温度保持在500℃时,可实现长时间稳定加热。
基金National High Technology Research and Development Program of China(2007AA05Z135)National Natural Science Funds for Distinguished Young Scholar(50727101)
基金Project supported by National Natural Science Foundation of China (21002012, 21173042)National Basic Research Program of China (973 Program) (2013CB932902)+1 种基金Educational Commission of Jiangsu Province (JHB 2011-2)Natural Science Foundation of Jiangsu Province (BK2011589)
文摘In this paper, we reported the fuel cell performance with La0.8Sr0.2MnO3 (LSM)/Ce0.8Sm0.2O1.9 (SDC) composite cathode prepared from LSM powders of different particle sizes via the silk-printing technique. It was found that the change in particle size ofLSM nanoparticle from 40 to 90 nm resulted in an increase in the maximum power density from 132 to 228 mW/cm2 at 650 ℃ with H2 as fuel and O2 as oxidant. And the polarization resistance of the electrode decreased from 2.547 to 1.034 Ω.cm2. Concerning the particle size of electrode materials, a higher activity was anticipated with smaller particles because a large number of TPB or electrode surface sites along with a higher porosity could be developed. However, this study showed that the electrode prepared with particles of larger diameter had fine and uniform microstructure resulting in higher power density and lower overpotential, where homogeneous distribution of particles and pores was beneficial for increasing the electrochemical active area and the electronic conductivity of the electrodes as well as the gas diffusion for the reactants.