Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu...Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.展开更多
The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth i...The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.展开更多
The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian O...The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.展开更多
Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on sur...Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.展开更多
The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies ...The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex...The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood...Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,19...Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,1992;Wesnousky et al.,1999;Malik et al.,2010;Coudurier-Curveur et al.,2020;Shah et al.,2020).These faults are potentially dangerous due to their unknown risk and deformation budget,two of the most important aspects of mapping and understanding the vulnerability and hazards associated with active faults.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In ...Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To ...The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).展开更多
The Weber Deep represents a widespread crustal extension system in eastern Indonesia with a huge submarine normal fault system,the Banda Detachment,related to the slab rollback tectonic model(Spakman and Hall,2010;Cum...The Weber Deep represents a widespread crustal extension system in eastern Indonesia with a huge submarine normal fault system,the Banda Detachment,related to the slab rollback tectonic model(Spakman and Hall,2010;Cummins et al.,2020).However,the cause of tectonic extension remains debated(e.g.,Audley-Charles et al.,1972;McCaffrey,1988;Das,2004;Spakman and Hall,2010;Pownall et al.,2013;Cummins et al.,2020;Hutchings and Mooney,2021;Shah et al.,2023).展开更多
This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” make...This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.展开更多
Quaternary valley fill deposits in the Upper Satluj Valley of NW Himalaya act as archives of changing climate-tectonic dynamics in a region.Quaternary landforms help in decoding the relationship between climate and te...Quaternary valley fill deposits in the Upper Satluj Valley of NW Himalaya act as archives of changing climate-tectonic dynamics in a region.Quaternary landforms help in decoding the relationship between climate and tectonics.Kinnaur region is traversed by several active faults and thrusts such as the Kaurik-Chango Fault(KCF)and Sangla Detachment(SD),thereby making upper Satluj Valley tectonically active.Morphotectonic parameters such as width of valley floor(Vfw),Normalized Steepness Index(KSn)and geomorphological evidences such as the presence of huge strath terraces,narrowing of the river valley and palaeolake deposits point towards the tectonically active nature of the terrain.This arid,high elevation region is also climatically sensitive as it falls in a transient climatic zone which receives rainfall only during abnormal monsoon months.Excessive rainfall causes outburst floods,a common phenomenon in the area due to the blocking of headwater in the upper reaches of the Satluj valley.As a result,the Quaternary sequence is modified from time to time.The transition from hypo concentrated deposits to channel deposits and ponding events are prominent in the depositional sequence,resulting from a response to climate.The studied Quaternary sediments reveal that the Trans-Himalayan region of the upper Satluj valley is affected by tectonic-climate variability,making it vulnerable to geohazards.展开更多
Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten wate...Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sinuosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R^(2)values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R^(2)curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra.展开更多
基金supported by the National Natural Science Foundation of China (42122017,41821002)the Hubei Provincial Natural Science Foundation of China (2020CFB501)+1 种基金the Shandong Provincial Key Research and Development Program (2020ZLYS08)the Independent innovation research program of China University of Petroleum (East China) (21CX06001A)。
文摘Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.
基金supported by the China Geological Survey(Grant No.DD20230254)。
文摘The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.
基金granted by the Geological Survey Project of the China Geological Survey for Regional Geophysical Survey in Beishan and Adjacent Areas(Grant No.DD20230254)。
文摘The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.
基金supported by National Natural Science Foundation of China(Grant Nos.42372239,41872237 and 41573023)the projects of China Geological Survey(Grant Nos.DD20160180,DD20190083,DD20190043,DD20221633)。
文摘Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.
基金financially supported by the China Geological Survey(Grant Nos.DD20230229,DD20160083,DD20190011,DD20221643-5)the National Key Research and Development Program of China(the DREAM—Deep Resource Exploration and Advanced Mining+1 种基金Grant No.2018YFC0603701)the Cooperative Project between the Chinese Academy of Geological Sciences and the Sinopec Shengli Oilfield Company(Grant No.P22065)。
文摘The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金supported by the National Natural Science Foundation of China(52164015)the Technology Funding Projects of Guizhou Province([2022]231).
文摘The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金funded by National Natural Science Foundation of China (Grant Nos. 42125204, 92155305, 42103068, 42372114, 42372115)。
文摘Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
文摘Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,1992;Wesnousky et al.,1999;Malik et al.,2010;Coudurier-Curveur et al.,2020;Shah et al.,2020).These faults are potentially dangerous due to their unknown risk and deformation budget,two of the most important aspects of mapping and understanding the vulnerability and hazards associated with active faults.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
基金funded by the National Natural Science Foundation of China(No.U21B2063)the Science and Technology Department of China Petrochemical Corporation(Sinopec)(No.P21086-3,No.P22122).
文摘Due to the considerable depth of the salt layers and the lack of calibration by exploratory drilling,the interpretation of the Middle and Lower Cambrian salt formations in the central Tarim Basin poses a challenge.In this paper,we apply the coupling and decoupling deformation theory in salt tectonics to analyze the No.7 fault mapped in the seismic datasets by the response characteristics of the Middle and Lower Cambrian layers.By quantifying the stratigraphic framework of the Middle and Lower Cambrian strata,we define the position of the salt layer with the seismic data.Structural decoupling is observed in the Middle and Lower Cambrian sequences in the Shuntuoguole Low Uplift,while deformation coupling is observed in these two sequences in the Shaya Uplift.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金the National Natural Science Foundation of China(No.42206073)the National Key R&D Program of China(No.2021YFC3100600)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110782)the China Post-doctoral Science Foundation(No.2021M703296)the Open Fund of the Key Laboratory of Tectonic Controlled Mineralization and Oil Reservoir of the Ministry of Natural Resources(No.gzck202101)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0206)the K.C.Wong Education Foundation(No.GJTD-2018-13)。
文摘The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).
文摘The Weber Deep represents a widespread crustal extension system in eastern Indonesia with a huge submarine normal fault system,the Banda Detachment,related to the slab rollback tectonic model(Spakman and Hall,2010;Cummins et al.,2020).However,the cause of tectonic extension remains debated(e.g.,Audley-Charles et al.,1972;McCaffrey,1988;Das,2004;Spakman and Hall,2010;Pownall et al.,2013;Cummins et al.,2020;Hutchings and Mooney,2021;Shah et al.,2023).
文摘This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.
基金the financial support provided by DST-Women Scientist Scheme (SR/WOS-A/EA-20/2019(G)
文摘Quaternary valley fill deposits in the Upper Satluj Valley of NW Himalaya act as archives of changing climate-tectonic dynamics in a region.Quaternary landforms help in decoding the relationship between climate and tectonics.Kinnaur region is traversed by several active faults and thrusts such as the Kaurik-Chango Fault(KCF)and Sangla Detachment(SD),thereby making upper Satluj Valley tectonically active.Morphotectonic parameters such as width of valley floor(Vfw),Normalized Steepness Index(KSn)and geomorphological evidences such as the presence of huge strath terraces,narrowing of the river valley and palaeolake deposits point towards the tectonically active nature of the terrain.This arid,high elevation region is also climatically sensitive as it falls in a transient climatic zone which receives rainfall only during abnormal monsoon months.Excessive rainfall causes outburst floods,a common phenomenon in the area due to the blocking of headwater in the upper reaches of the Satluj valley.As a result,the Quaternary sequence is modified from time to time.The transition from hypo concentrated deposits to channel deposits and ponding events are prominent in the depositional sequence,resulting from a response to climate.The studied Quaternary sediments reveal that the Trans-Himalayan region of the upper Satluj valley is affected by tectonic-climate variability,making it vulnerable to geohazards.
基金Research Development Fund(IIT Bombay)supported SM。
文摘Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sinuosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R^(2)values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R^(2)curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra.