The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosu...The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.展开更多
Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as sta...Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.展开更多
With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acous...With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acoustic transfer vector(ATV) technique and coupled boundary element model and finite element model (BEM-FEM) approach.Analyses of vibration exciting loads,computing structural dynamic characteristics and dynamic responses have led to theoretical results,which are tested on an L6 diesel engine to validate this proposed technique in engineering practice.展开更多
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical me...Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coef- ficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoratically. The numerical calculation is made by using point force actuators as control forces.展开更多
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simu...We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.展开更多
AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter...AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter,"focal disturbance ratio"(FD-ratio).METHODS:Nine ob/ob mice,at 5,8,and 12 wk of age(n = 3 in each age group),were used as models for hepatic steatosis.Echo signals obtained from ultrasonography in the mice were analyzed by ASQ,which uses a statistical analysis of echo amplitude to estimate inhomogeneity in the diagnostic region.FD-ratio,as calculated from this analysis,was the focus of the present study.FD-ratio and fat droplet areas and sizes were compared between age groups.RESULTS:No fibrosis or inflammation was observed in any of the groups.The fat droplet area significantly(P < 0.01) increased with age from 1.25% ± 0.28% at 5 wk to 31.07% ± 0.48% at 8 wk to 51.69% ± 3.19% at 12 wk.The median fat droplet size also significantly(P < 0.01) increased with age,from 1.33(0.55-10.52) m at 5 wk,2.82(0.61-44.13) m at 8 wk and 6.34(0.66-81.83) m at 12 wk.The mean FD-ratio was 0.42 ± 0.11 at 5 wk,0.11 ± 0.05 at 8 wk,and 0.03 ± 0.02 at 12 wk.The FD-ratio was significantly lower at 12 wk than at 5 wk and 8 wk(P < 0.01).A significant negative correlation was observed between the FD-ratio and either the fat droplet area(r =-0.7211,P = 0.0017) or fat droplet size(r =-0.9811,P = 0.0052).CONCLUSION:This tool for statistical analysis of signals from ultrasonography using the FD-ratio can be used to accurately quantify fat in vivo in an animal model of hepatic steatosis,and may serve as a quantitative biomarker of hepatic steatosis.展开更多
We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which...We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.展开更多
In the backward propagation of acoustic waves, the direction of phase velocity is anti-parallel to that of group velocity. We propose a scheme to manipulate the backward propagation using a periodicM structure. The dy...In the backward propagation of acoustic waves, the direction of phase velocity is anti-parallel to that of group velocity. We propose a scheme to manipulate the backward propagation using a periodicM structure. The dynamic backward propagation process is further experimentally observed. It is demonstrated that the oblique incident plane wave moves backward when it travels through the periodical structure and the backward shift can be controlled within a certain range.展开更多
Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency...Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.展开更多
A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and te...A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented展开更多
Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signa...Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.展开更多
This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively t...This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances.The smart panels are equipped with two types of actuators:first,distributed piezoelectric actuators formed either by small piezoelectric patches or large piezoelectric films bonded on the panels and second,point actuators formed by proof-mass electromagnetic transducers.Also,the panels encompass three types of sensors:first,small capacitive microphone sensors placed in front of the panels;second,distributed piezoelectric sensors formed by large piezoelectric films bonded on the panels and third point sensors formed by miniaturized accelerometers.The proposed systems implement both single-channel and multi-channel feed-forward and feedback control architectures.The study shows that,the vibration and sound radiation control performance of both feed-forward and feedback systems critically depends on the sensor-actuator configurations.展开更多
Using the finite element method (FEM) and boundary element method (BEM) and considering the sound absorption layer which is covered on the backing of the sonar dome, the interior field in the dome which is excited...Using the finite element method (FEM) and boundary element method (BEM) and considering the sound absorption layer which is covered on the backing of the sonar dome, the interior field in the dome which is excited by the incident plane wave has been studied. This method is validated by comparing numerical results with that of classic elastic theory. Then the effect of parameters of the sound absorption layer on interior sound field has been analyzed. The numerical calculation results show that uniformity of interior sound pressure is improved when the backing is covered with a sound absorption layer. The thicker the layer is, or the higher the loss factor of layer is, the more uniform the sound field is.展开更多
基金Supported by the National Natural Science Foundation of China(50375027,50575041)~~
文摘The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.
基金This project is supported by National Natural Science Foundation of China (No.10472035).
文摘Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.
基金Sponsored by the National Natural Science Foundation of China (50505047)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘With the purpose of efficiently predicting structural radiated noise of internal combustion engine(I.C.E.),a new simulation technique is introduced,which is an approach based on boundary element method (BEM),acoustic transfer vector(ATV) technique and coupled boundary element model and finite element model (BEM-FEM) approach.Analyses of vibration exciting loads,computing structural dynamic characteristics and dynamic responses have led to theoretical results,which are tested on an L6 diesel engine to validate this proposed technique in engineering practice.
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
基金the National Natural Science Foundation of China (No.50075O36).
文摘Based on the radiation modes, an active control strategy is presented for sound radiation from elastic structures with an example of simply supported rectangular panel. The physical characteristics and mathematical meaning of the radiation modes are analyzed. The radiation efficiency of radiation mode falls off very rapidly with the increase of modes order at low frequency. A new control strategy is developed in which by canceling the adjoint coef- ficient of the first k radiation modes, the sound powers of the first k radiation modes is zero theoratically. The numerical calculation is made by using point force actuators as control forces.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.
基金Support by the National Natural Science Foundation of China under Grant Nos. 10604014 and 10874025by Chinese National Key Basic Research Special Fund under Grant No. 2006CB921706
文摘We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamateriais. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow.
文摘AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter,"focal disturbance ratio"(FD-ratio).METHODS:Nine ob/ob mice,at 5,8,and 12 wk of age(n = 3 in each age group),were used as models for hepatic steatosis.Echo signals obtained from ultrasonography in the mice were analyzed by ASQ,which uses a statistical analysis of echo amplitude to estimate inhomogeneity in the diagnostic region.FD-ratio,as calculated from this analysis,was the focus of the present study.FD-ratio and fat droplet areas and sizes were compared between age groups.RESULTS:No fibrosis or inflammation was observed in any of the groups.The fat droplet area significantly(P < 0.01) increased with age from 1.25% ± 0.28% at 5 wk to 31.07% ± 0.48% at 8 wk to 51.69% ± 3.19% at 12 wk.The median fat droplet size also significantly(P < 0.01) increased with age,from 1.33(0.55-10.52) m at 5 wk,2.82(0.61-44.13) m at 8 wk and 6.34(0.66-81.83) m at 12 wk.The mean FD-ratio was 0.42 ± 0.11 at 5 wk,0.11 ± 0.05 at 8 wk,and 0.03 ± 0.02 at 12 wk.The FD-ratio was significantly lower at 12 wk than at 5 wk and 8 wk(P < 0.01).A significant negative correlation was observed between the FD-ratio and either the fat droplet area(r =-0.7211,P = 0.0017) or fat droplet size(r =-0.9811,P = 0.0052).CONCLUSION:This tool for statistical analysis of signals from ultrasonography using the FD-ratio can be used to accurately quantify fat in vivo in an animal model of hepatic steatosis,and may serve as a quantitative biomarker of hepatic steatosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774137 and 11404147)the Major Program of the National Natural Science Foundation of China(Grant No.51239005)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20140519 and BK20140523)the Jiangsu Qing Lan Project,Chinathe Practice Innovation Training Program Projects for Industrial Center of Jiangsu University,China
文摘We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404245 and 11374231the National High-Tech Research and Development Program of China under Grant No 2012AA022606+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130091130004the National Key Scientific Instrument and Equipment Development Project of China under Grant No 2012YQ15021306
文摘In the backward propagation of acoustic waves, the direction of phase velocity is anti-parallel to that of group velocity. We propose a scheme to manipulate the backward propagation using a periodicM structure. The dynamic backward propagation process is further experimentally observed. It is demonstrated that the oblique incident plane wave moves backward when it travels through the periodical structure and the backward shift can be controlled within a certain range.
基金This study was co-supported by the National Natural Science Foundation of China(No.52275293)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515010774)+1 种基金the Basic Research Program of Shenzhen,China(No.JCYJ 20190806142816524)the National Key Laboratory of Science and Technology on Aerodynamic Design and Research,China(No.61422010301).
文摘Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.
文摘A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented
基金supported by the Natural Science Foundation of Naval University of Engineering(under Grant No.HGDYDJJ13152)
文摘Based on mode acoustic emission theory,the paper analyses the acoustic emission analog signal of thin steel plate using matching pursuit,then obtains the characteristics interpretation of the different frequency signal energy concentration degree; Combined with four-point arc positioning method,the papers researches the damage localization of the plate-like structure. Simulation experiment shows that this method can accurately detect and locate the damage. This can provide data support for further imaging research based on time reverse theory.
基金This work was supported by DEVISU project which was funded by the Ministero dell’Istruzione,dell’Universitàe della Ricerca,research funding programme PRIN 2017[2017ZX9X4K].
文摘This paper presents a comprehensive overview of the principal features of smart panels equipped with feed-forward and feedback systems for the control of the flexural response and sound transmission due respectively to tonal and to stochastic broadband disturbances.The smart panels are equipped with two types of actuators:first,distributed piezoelectric actuators formed either by small piezoelectric patches or large piezoelectric films bonded on the panels and second,point actuators formed by proof-mass electromagnetic transducers.Also,the panels encompass three types of sensors:first,small capacitive microphone sensors placed in front of the panels;second,distributed piezoelectric sensors formed by large piezoelectric films bonded on the panels and third point sensors formed by miniaturized accelerometers.The proposed systems implement both single-channel and multi-channel feed-forward and feedback control architectures.The study shows that,the vibration and sound radiation control performance of both feed-forward and feedback systems critically depends on the sensor-actuator configurations.
基金the State Key Laboratory of Ocean Engineering Autonomous Research Project(No.GKZD010036)
文摘Using the finite element method (FEM) and boundary element method (BEM) and considering the sound absorption layer which is covered on the backing of the sonar dome, the interior field in the dome which is excited by the incident plane wave has been studied. This method is validated by comparing numerical results with that of classic elastic theory. Then the effect of parameters of the sound absorption layer on interior sound field has been analyzed. The numerical calculation results show that uniformity of interior sound pressure is improved when the backing is covered with a sound absorption layer. The thicker the layer is, or the higher the loss factor of layer is, the more uniform the sound field is.