期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Finite element analysis of dynamic response and structure borne noise of gearbox 被引量:4
1
作者 LIU Wen LIN Teng-jiao LI Run-fang DU Xue-song 《Journal of Chongqing University》 CAS 2007年第2期119-124,共6页
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ... A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing. 展开更多
关键词 aear system finite element method: modal analysis response analyses structure borne noise
下载PDF
Noise Reduction of an Axial Piston Pump by Valve Plate Optimization 被引量:20
2
作者 Shao-Gan Ye Jun-Hui Zhang Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期85-100,共16页
Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show e... Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show excellent perfor?mance in avoiding air?release and cavitation. This study aims to reduce the noise emitted from an axial piston pump using a novel valve plate utilizing damping holes. A dynamic pump model is developed,in which the fluid properties are carefully modeled to capture the phenomena of air release and cavitation. The causes of di erent noise sources are investigated using the model. A comprehensive parametric analysis is conducted to enhance the understanding of the e ects of the valve plate parameters on the noise sources. A multi?objective genetic algorithm optimization method is proposed to optimize the parameters of valve plate. The amplitudes of the swash plate moment and flow rates in the inlet and outlet ports are defined as the objective functions. The pressure overshoot and undershoot in the piston chamber are limited by properly constraining the highest and lowest pressure values. A comparison of the various noise sources between the original and optimized designs over a wide range of pressure levels shows that the noise sources are reduced at high pressures. The results of the sound pressure level measurements show that the optimized valve plate reduces the noise level by 1.6 d B(A) at the rated working condition. The proposed method is e ective in reducing the noise of axial piston pumps and contributes to the development of quieter axial piston machines. 展开更多
关键词 Axial piston pump noise reduction Fluid?borne noise Structure?borne noise Parametric analysis Multi?objective optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部